Search for the chiral magnetic effect in heavy ion collisions
Tóm tắt
Từ khóa
Tài liệu tham khảo
R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803 (1948). https://doi.org/10.1103/PhysRev.73.803
A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)] [Sov. Phys. Usp. 34(5), 392 (1991)] [Usp. Fiz. Nauk. 161(5), 61 (1991)]. https://doi.org/10.1070/PU1991v034n05ABEH002497
M. Dine, A. Kusenko, The origin of the matter: antimatter asymmetry. Rev. Mod. Phys. 76, 1 (2003). https://doi.org/10.1103/RevModPhys.76.1
T. Mannel, Theory and phenomenology of CP violation. Nucl. Phys. Proc. Suppl. 167, 115 (2007). https://doi.org/10.1016/j.nuclphysbps.2006.12.083
R.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.1103/PhysRevLett.38.1440
T.D. Lee, A theory of spontaneous T violation. Phys. Rev. D 8, 1226 (1973). https://doi.org/10.1103/PhysRevD.8.1226
T.D. Lee, G.C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291 (1974). https://doi.org/10.1103/PhysRevD.9.2291
P.D. Morley, I.A. Schmidt, Strong P, CP, T violations in heavy ion collisions. Z. Phys. C 26, 627 (1985). https://doi.org/10.1007/BF01551807
D. Kharzeev, R. Pisarski, M.H. Tytgat, Possibility of spontaneous parity violation in hot QCD. Phys. Rev. Lett. 81, 512 (1998). https://doi.org/10.1103/PhysRevLett.81.512
D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260 (2006). https://doi.org/10.1016/j.physletb.2005.11.075
D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’event by event P and CP violation’. Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298
K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033
B. Muller, A. Schafer, Charge fluctuations from the chiral magnetic effect in nuclear collisions. Phys. Rev. C 82, 057902 (2010). https://doi.org/10.1103/PhysRevC.82.057902
J. Adams et al., [STAR Collaboration], Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085
K. Adcox et al., [PHENIX Collaboration], Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086
I. Arsene et al., [BRAHMS Collaboration], Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130
B.B. Back et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084
B. Muller, J. Schukraft, B. Wyslouch, First Results from Pb + Pb collisions at the LHC. Ann. Rev. Nucl. Part. Sci. 62, 361 (2012). https://doi.org/10.1146/annurev-nucl-102711-094910
K. Tuchin, Synchrotron radiation by fast fermions in heavy-ion collisions. Phys. Rev. C 82, 034904 (2010). https://doi.org/10.1103/PhysRevC.82.034904 . Erratum: synchrotron radiation by fast fermions in heavy-ion collisions [Phys. Rev. C 82, 034904 (2010)]. Phys. Rev. C 83, 039903 (2011) https://doi.org/10.1103/PhysRevC.83.039903
D. She, S.Q. Feng, Y. Zhong et al., Chiral magnetic currents with QGP medium response in heavy ion collisions at RHIC and LHC energies. Eur. Phys. J. A 54, 48 (2018). https://doi.org/10.1140/epja/i2018-12481-x
D.E. Kharzeev, J. Liao, S.A. Voloshin et al., Chiral magnetic and vortical effects in high-energy nuclear collisions: a status report. Prog. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001
J. Zhao, Search for the chiral magnetic effect in relativistic heavy-ion collisions. Int. J. Mod. Phys. A 33, 1830010 (2018). https://doi.org/10.1142/S0217751X18300107
J. Zhao, Z. Tu, F. Wang, Status of the chiral magnetic effect search in relativistic heavy-ion collisions. arXiv:1807.05083 [nucl-ex]
L. Adamczyk et al., [STAR Collaboration], Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at $$\sqrt{{s}_\text{ NN }} =$$ s NN = 200 GeV. Phys. Rev. C 89, 044908 (2014). https://doi.org/10.1103/PhysRevC.89.044908
N.N. Ajitanand, R.A. Lacey, A. Taranenko et al., A New method for the experimental study of topological effects in the quark-gluon plasma. Phys. Rev. C 83, 011901 (2011)
N. Magdy, S. Shi, J. Liao et al., New correlator to detect and characterize the chiral magnetic effect. Phys. Rev. C 97, 061901 (2018). https://doi.org/10.1103/PhysRevC.97.061901
P. Bozek, Azimuthal angle dependence of the charge imbalance from charge conservation effects. Phys. Rev. C 97, 034907 (2018). https://doi.org/10.1103/PhysRevC.97.034907
Y. Feng, J. Zhao, F. Wang, Responses of the chiral-magnetic-effect-sensitive sine observable to resonance backgrounds in heavy-ion collisions. Phys. Rev. C 98, 034904 (2018). https://doi.org/10.1103/PhysRevC.98.034904
S.A. Voloshin, Parity violation in hot QCD: how to detect it. Phys. Rev. C 70, 057901 (2004). https://doi.org/10.1103/PhysRevC.70.057901
B.I. Abelev et al., [STAR Collaboration], Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81, 054908 (2010). https://doi.org/10.1103/PhysRevC.81.054908
B.I. Abelev et al., [STAR Collaboration], Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009). https://doi.org/10.1103/PhysRevLett.103.251601
L. Adamczyk et al., [STAR Collaboration], Fluctuations of charge separation perpendicular to the event plane and local parity violation in $$\sqrt{s_{\rm NN}}=200$$ s NN = 200 GeV Au + Au collisions at the BNL relativistic heavy ion collider. Phys. Rev. C 88(6), 064911 (2013). https://doi.org/10.1103/PhysRevC.88.064911
L. Adamczyk et al., [STAR Collaboration], Beam-energy dependence of charge separation along the magnetic field in Au + Au collisions at RHIC. Phys. Rev. Lett. 113, 052302 (2014). https://doi.org/10.1103/PhysRevLett.113.052302
B. Abelev et al., [ALICE Collaboration], Charge separation relative to the reaction plane in Pb–Pb collisions at $$\sqrt{s_{\rm NN}}= 2.76$$ s NN = 2.76 TeV. Phys. Rev. Lett. 110, 012301 (2013). https://doi.org/10.1103/PhysRevLett.110.012301
A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671 (1998). https://doi.org/10.1103/PhysRevC.58.1671
J.Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229 (1992). https://doi.org/10.1103/PhysRevD.46.229
U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540
B. Alver et al., [PHOBOS Collaboration], System size, energy, pseudorapidity, and centrality dependence of elliptic flow. Phys. Rev. Lett. 98, 242302 (2007). https://doi.org/10.1103/PhysRevLett.98.242302
C. Adler, A. Denisov, E. Garcia et al., The RHIC zero-degree calorimeters. Nucl. Instrum. Methods A 499, 433 (2003). https://doi.org/10.1016/j.nima.2003.08.112
W. Reisdorf, H.G. Ritter, Collective flow in heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 47, 663 (1997). https://doi.org/10.1146/annurev.nucl.47.1.663
F. Wang, Effects of cluster particle correlations on local parity violation observables. Phys. Rev. C 81, 064902 (2010). https://doi.org/10.1103/PhysRevC.81.064902
A. Bzdak, V. Koch, J. Liao, Remarks on possible local parity violation in heavy ion collisions. Phys. Rev. C 81, 031901 (2010). https://doi.org/10.1103/PhysRevC.81.031901
J. Liao, V. Koch, A. Bzdak, On the charge separation effect in relativistic heavy ion collisions. Phys. Rev. C 82, 054902 (2010). https://doi.org/10.1103/PhysRevC.82.054902
A. Bzdak, V. Koch, J. Liao, Azimuthal correlations from transverse momentum conservation and possible local parity violation. Phys. Rev. C 83, 014905 (2011). https://doi.org/10.1103/PhysRevC.83.014905
S. Schlichting, S. Pratt, Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables. Phys. Rev. C 83, 014913 (2011). https://doi.org/10.1103/PhysRevC.83.014913
S. Pratt, S. Schlichting, S. Gavin, Effects of momentum conservation and flow on angular correlations at RHIC. Phys. Rev. C 84, 024909 (2011). https://doi.org/10.1103/PhysRevC.84.024909
H. Petersen, T. Renk, S.A. Bass, Medium-modified jets and initial state fluctuations as sources of charge correlations measured at RHIC. Phys. Rev. C 83, 014916 (2011). https://doi.org/10.1103/PhysRevC.83.014916
V.D. Toneev, V.P. Konchakovski, V. Voronyuk et al., Event-by-event background in estimates of the chiral magnetic effect. Phys. Rev. C 86, 064907 (2012). https://doi.org/10.1103/PhysRevC.86.064907
F. Wang, J. Zhao, Challenges in flow background removal in search for the chiral magnetic effect. Phys. Rev. C 95(5), 051901 (2017). https://doi.org/10.1103/PhysRevC.95.051901
A. Bzdak, Suppression of elliptic flow induced correlations in an observable of possible local parity violation. Phys. Rev. C 85, 044919 (2012). https://doi.org/10.1103/PhysRevC.85.044919
F. Wen, J. Bryon, L. Wen et al., Event-shape-engineering study of charge separation in heavy-ion collisions. Chin. Phys. C 42(1), 014001 (2018). https://doi.org/10.1088/1674-1137/42/1/014001
S. Acharya et al., [ALICE Collaboration], Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb–Pb collisions at $$\sqrt{s_{{\rm NN}}} = 2.76$$ s NN = 2.76 TeV. Phys. Lett. B 777, 151 (2018). https://doi.org/10.1016/j.physletb.2017.12.021
A.M. Sirunyan et al., [CMS Collaboration], Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in $$p\rm Pb$$ p Pb and PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. C 97, 044912 (2018). https://doi.org/10.1103/PhysRevC.97.044912
J. Zhao, H. Li, F. Wang, Isolating the chiral magnetic effect from backgrounds by pair invariant mass. arXiv:1705.05410 [nucl-ex]
H. Li, J. Zhao, F. Wang, A novel invariant mass method to isolate resonance backgrounds from the chiral magnetic effect. arXiv:1808.03210 [nucl-ex]
J. Zhao, [STAR Collaboration], Chiral magnetic effect search in p + Au, d + Au and Au + Au collisions at RHIC. EPJ Web Conf. 172, 01005 (2018). https://doi.org/10.1051/epjconf/201817201005
J. Zhao, [STAR Collaboration], Chiral magnetic effect search in p(d)+Au, Au+Au collisions at RHIC. Int. J. Mod. Phys. Conf. Ser. 46, 1860010 (2018). https://doi.org/10.1142/S2010194518600108
J. Zhao [STAR Collaboration], Measurements of the chiral magnetic effect with background isolation in 200 GeV Au + Au collisions at STAR. arXiv:1807.09925 [nucl-ex]
H.J. Xu, X. Wang, H. Li et al., Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121, 022301 (2018). https://doi.org/10.1103/PhysRevLett.121.022301
H.J. Xu, J. Zhao, X. Wang et al., Varying the chiral magnetic effect relative to flow in a single nucleus–nucleus collision. Chin. Phys. C 42, 084103 (2018). https://doi.org/10.1088/1674-1137/42/8/084103
H.J. Xu, J. Zhao, X. Wang, et al., Re-examining the premise of isobaric collisions and a novel method to measure the chiral magnetic effect. arXiv:1808.00133 [nucl-th]
B. Tu, Charge asymmetry correlations to search for the chiral magnetic effect from beam energy scan by STAR. Kobe, Japan, Sep 27–Oct 3 (2015). https://drupal.star.bnl.gov/STAR/presentations/qm2015/biao-tu
J. Schukraft, A. Timmins, S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering. Phys. Lett. B 719, 394 (2013). https://doi.org/10.1016/j.physletb.2013.01.045
S.A. Voloshin, Testing the chiral magnetic effect with central U + U collisions. Phys. Rev. Lett. 105, 172301 (2010). https://doi.org/10.1103/PhysRevLett.105.172301
S. Chatterjee, P. Tribedy, Separation of flow from the chiral magnetic effect in U + U collisions using spectator asymmetry. Phys. Rev. C 92(1), 011902 (2015). https://doi.org/10.1103/PhysRevC.92.011902
L. Adamczyk et al., [STAR Collaboration], Measurements of dielectron production in $$\text{ Au }+\text{ Au }$$ Au + Au collisions at $$\sqrt{s_{\rm NN}} = 200~\text{ GeV }$$ s NN = 200 GeV from the STAR experiment. Phys. Rev. C 92(2), 024912 (2015). https://doi.org/10.1103/PhysRevC.92.024912
S. Shi, Y. Jiang, E. Lilleskov et al., Anomalous chiral transport in heavy ion collisions from anomalous-viscous fluid dynamics. Ann. Phys. 394, 50 (2018). https://doi.org/10.1016/j.aop.2018.04.026
M. Anderson, J. Berkovitz, W. Betts et al., The star time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods A 499, 659 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2
C. Adler, A. Denisov, E. Garcia et al., The RHIC zero degree calorimeter. Nucl. Instrum. Methods A 470, 488 (2001). https://doi.org/10.1016/S0168-9002(01)00627-1
N.M. Abdelwahab et al., [STAR Collaboration], Isolation of flow and nonflow correlations by two- and four-particle cumulant measurements of azimuthal harmonics in $$\sqrt{s_{{\rm NN}}} = 200$$ s NN = 200 GeV Au + Au collisions. Phys. Lett. B 745, 40 (2015). https://doi.org/10.1016/j.physletb.2015.04.033