Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au12 Nanoclusters

Topics in Catalysis - Tập 55 - Trang 336-344 - 2012
L. C. Grabow1,2,3, B. Hvolbæk1, H. Falsig1,4, J. K. Nørskov1,2,4
1Department of Physics, Center for Atomic-scale Materials Design, Technical University of Denmark, Lyngby, Denmark
2Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, USA
3Department of Chemical and Biomolecular Engineering, University of Houston, Houston, USA
4SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, Menlo Park, USA

Tóm tắt

We present density functional theory calculations on the direct synthesis of H2O2 from H2 and O2 over an Au12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary reactions involved in the oxidation of H2 by O2. The unwanted side reaction to H2O is also considered. Next we evaluate the degree of catalyst control and address the factors controlling the activity and the selectivity. By combining well-known energy scaling relations with microkinetic modeling, we show that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (EO). Our model predicts the search direction starting from an Au12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability considerations into account, we find that binary Au–Pd and Au–Ag alloys are most suited for this reaction.

Tài liệu tham khảo

Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 405–408 Prati L (1998) J Catal 176:552–560 Hutchings G (1985) J Catal 96:292–295 Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Angew Chem 118:4764–4767 Abad A, Concepción P, Corma A, García H (2005) Angew Chem Int Ed 44:4066–4069 Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings CJ (2002) Chemical communications. Cambridge, England, pp 2058–2059 Edwards J, Ntainjua EN, Carley A, Herzing A, Kiely C, Hutchings G (2009) Angew Chem Int Ed 48:8512–8515 Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Surf Sci 604:1565–1575 Todorovic R, Meyer RJ (2011) Catal Today 160:242–248 Edwards JK, Solsona B, Carley AF, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ et al (2009) Science 323:1037 Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689–2695 Ntainjua EN, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Kiely CJ, Hutchings GJ (2011) Catal Today 178:47–50 Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225 Hutchings GJ (2008) Chem Commun 7345:1148–1164 Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595 Edwards J, Solsona B, Landon P, Carley A, Herzing A, Kiely C, Hutchings G (2005) J Catal 236:69–79 Samanta C (2008) Appl Catal A 350:133–149 Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46 Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Natl Acad Sci U S A 108:937–943 Kacprzak KA, Akola J, Häkkinen H (2009) Phys Chem Chem Phys 11:6359–6364 Ham HC, Hwang GS, Han J, Nam SW, Lim TH (2009) J Phys Chem C 113:12943–12945 Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) J Phys Chem C 112:19501–19505 Barton DG, Podkolzin SG (2005) J Phys Chem B 109:2262–2274 Nørskov JK, Bligaard T, Kleis J (2009) Science 324:1655–1656 Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56–66 Hammer B, Hansen L, Nørskov J (1999) Phys Rev B 59:7413–7421 Vanderbilt D (1990) Phys Rev B 41:7892–7895 Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901 NIST chemistry WebBook. http://webbook.nist.gov/chemistry/ (2011) Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem Inter Ed 47:4835–4839 Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553 Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skúlason E et al (2011) Phys Chem Chem Phys 20760–20765:13 Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2010) Catal Lett 141:370–373 Campbell CT (1994) Top Catal 1:353–366 Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077–8082 Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:16104–16105 Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278 Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178–184 Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Phys Chem Chem Phys 12:283–290 Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165 Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141:1067–1071 Grabow LC, Hvolbæk B, Nørskov JK (2010) Top Catal 53:298–310 Poon H, Khanra B, King T (1993) Phys Rev B 47:16494–16498 Curtarolo S, Morgan D, Ceder G (2005) Comput Coupling Phase Diagr Thermochem 29:163–211