Seagrass detection in the mediterranean: A supervised learning approach
Tài liệu tham khảo
Ahmad, F., Azman, S., Said, M. I. M., & Lavania-Baloo (2015). Tropical seagrass as a bioindicator of metal accumulation. Sains Malaysiana, 44, 203–210.
Alameddine, 2011, An evaluation of automated structure learning with Bayesian networks: an application to estuarine chlorophyll dynamics, Environ. Model Softw., 26, 163, 10.1016/j.envsoft.2010.08.007
Arthur, 2010, Influence of woody vegetation on pollinator densities in oilseed brassica fields in an Australian temperate landscape, Basic Appl. Ecol., 11, 406, 10.1016/j.baae.2010.05.001
Bentlage, 2009, Inferring distributions of chirodropid box-jellyfishes (Cnidaria: Cubozoa) in geographic and ecological space using ecological niche modeling, Mar. Ecol. Prog. Ser., 384, 121, 10.3354/meps08012
Bite, 2007, Chlorophyll fluorescence measures of seagrasses Halophila ovalis and zostera capricorni reveal differences in response to experimental shading, Mar. Biol., 152, 405, 10.1007/s00227-007-0700-6
Boudouresque, 2009, Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, Bot. Mar., 52, 395, 10.1515/BOT.2009.057
Breiman, 2001, Random forests, Machine Learn., 45, 5, 10.1023/A:1010933404324
Brix, 1985, Uptake and translocation of phosphorus in eelgrass (Zostera marina), Mar. Biol., 90, 111, 10.1007/BF00428221
Cardoso, 2004, Dynamic changes in seagrass assemblages under eutrophication and implications for recovery, J. Exp. Mar. Biol. Ecol., 302, 233, 10.1016/j.jembe.2003.10.014
Castriota, 2001, A one-year study of the effects of a hyperhaline discharge from a desalination plant on the zoobenthic communities in the Ustica island marine reserve (southern Tyrrhenian Sea)
Cherkassky, 1997, The nature of statistical learning theory, IEEE Trans. Neural Netw., 8, 1564, 10.1109/TNN.1997.641482
Danovaro, 1996, Detritus-bacteria-meiofauna interactions in a seagrass bed (Posidonia oceanica) of the nw mediterranean, Mar. Biol., 127, 1, 10.1007/BF00993638
Danovaro, 1995, Seasonal and interannual variation of benthic bacteria in a seagrass bed (Posidonia oceanica) of the ligurian sea in relation to the origin, composition and other environmental factors, Aquat. Microb. Ecol., 9, 17, 10.3354/ame009017
De'Ath, 2007, Boosted trees for ecological modeling and prediction, Ecology, 88, 243, 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
De'ath, 2000, Classification and regression trees: a powerful yet simple technique for ecological data analysis, Ecology, 81, 3178, 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
Desktop, 2011, Vol. 437, 438
Duarte, 2007, Testing the predictive power of seagrass depth limit models, Estuar. Coasts, 30, 652, 10.1007/BF02841962
ECJRC (2018). European commission joint reseach centre, directorate space, security and migration, copernicus emergency management service. http://emergency.copernicus.eu, [2018-02-16].
Elkalay, 2003, A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the bay of calvi (northwestern Mediterranean), Ecol. Model., 167, 1, 10.1016/S0304-3800(03)00074-7
Marine Information Service, 2016, EMODnet Digital Bathymetry (DTM 2016), EMODnet Bathymetry
Fernández-Torquemada, 2005, Effects of salinity on leaf growth and survival of the mediterranean seagrass Posidonia oceanica (l.) delile, J. Exp. Mar. Biol. Ecol., 320, 57, 10.1016/j.jembe.2004.12.019
Ferrat, 2003, Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses, Aquat. Toxicol., 65, 187, 10.1016/S0166-445X(03)00133-4
Fourqurean, 1992, Phosphorus limitation of primary production in Florida bay: evidence from c: N: P ratios of the dominant seagrass Thalassia testudinum, Limnol. Oceanogr., 37, 162, 10.4319/lo.1992.37.1.0162
Gacia, 2007, Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow, Estuar. Coast. Shelf Sci., 72, 579, 10.1016/j.ecss.2006.11.021
Giannoulaki, 2013, Mediterranean sensitive habitats (mediseh), final project report, DG MARE Specific Contract SI2, 600, 557
Govers, 2014, Seagrasses as indicators for coastal trace metal pollution: a global meta-analysis serving as a benchmark, and a Caribbean case study, Environ. Pollut., 195, 210, 10.1016/j.envpol.2014.08.028
Green, 2003
Guisan, 2000, Predictive habitat distribution models in ecology, Ecol. Model., 135, 147, 10.1016/S0304-3800(00)00354-9
Guisan, 2002, Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89, 10.1016/S0304-3800(02)00204-1
Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634
Kanevski, 2004, Environmental data mining and modeling based on machine learning algorithms and geostatistics, Environ. Model Softw., 19, 845, 10.1016/j.envsoft.2003.03.004
Knudby, 2010, New approaches to modelling fish–habitat relationships, Ecol. Model., 221, 503, 10.1016/j.ecolmodel.2009.11.008
Lee, 2004, Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three new england estuaries, Aquat. Bot., 78, 197, 10.1016/j.aquabot.2003.09.010
Lehner, 2006, 1
Li, 2011, A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors, Ecol. Inform., 6, 228, 10.1016/j.ecoinf.2010.12.003
Li, 2013, 299
Li, 2017, Application of random forest, generalised linear model and their hybrid methods with geostatistical techniques to count data: predicting sponge species richness, Environ. Model Softw., 97, 112, 10.1016/j.envsoft.2017.07.016
Martins, 2001, Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: a case study on the influence of precipitation and river management, Estuar. Coast. Shelf Sci., 52, 165, 10.1006/ecss.2000.0708
Merckx, 2009, Predictability of marine nematode biodiversity, Ecol. Model., 220, 1449, 10.1016/j.ecolmodel.2009.03.016
Olesen, 2002, Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean sea, Mar. Ecol. Prog. Ser., 236, 89, 10.3354/meps236089
Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825
Pérez, 1993, Preliminary data on alkaline phosphatase activity associated with Mediterranean seagrasses, Bot. Mar., 36, 499, 10.1515/botm.1993.36.6.499
Ruíz, 2009, Responses of the mediterranean seagrass Posidonia oceanica to in situ simulated salinity increase, Bot. Mar., 52, 459, 10.1515/BOT.2009.051
Sandoval-Gil, 2012, The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa, Estuar. Coast. Shelf Sci., 115, 260, 10.1016/j.ecss.2012.09.008
Tittensor, 2009, Predicting global habitat suitability for stony corals on seamounts, J. Biogeogr., 36, 1111, 10.1111/j.1365-2699.2008.02062.x
Tomasello, 2009, Seagrass meadows at the extreme of environmental tolerance: the case of Posidonia oceanica in a semi-enclosed coastal lagoon, Mar. Ecol., 30, 288, 10.1111/j.1439-0485.2009.00285.x
Udy, 1997, Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton bay, Australia, J. Exp. Mar. Biol. Ecol., 217, 253, 10.1016/S0022-0981(97)00060-9
Volf, 2011, Descriptive and prediction models of phytoplankton in the northern Adriatic, Ecol. Model., 222, 2502, 10.1016/j.ecolmodel.2011.02.013
Weatherdon, 2015
Wessel, P., & Smith, W. (2013). Gshhg—a global self-consistent, hierarchical, highresolution geography database. Honolulu, Hawaii, Silver Spring, Maryland.(URL: http://www.soest.hawaii.edu/pwessel/gshhg/(Accessed 10 January2013).
Wiley, E. O., McNyset, K. M., Peterson, A. T., Robins, C. R., & Stewart, A. M. (2003). Niche modelin perspective on geographic range predictions in the marine environment using a machine-learning algorithm.
