Các dị thường nhiệt độ bề mặt biển do lực tác động địa phương ở khu vực giao thoa Brazil-Malvinas

Springer Science and Business Media LLC - Tập 64 - Trang 347-360 - 2014
Isabel Porto da Silveira1,2, Luciano Ponzi Pezzi1,3
1National Institute for Space Research (INPE), São José dos Campos, Brazil
2Center for Weather Forecast and Climate Studies (CPTEC), São José dos Campos, Brazil
3Earth Observation General Coordination (OBT), São José dos Campos, Brazil

Tóm tắt

Các sự kiện dị thường nhiệt độ bề mặt biển (SST) ở khu vực giao thoa Brazil-Malvinas (BMC) đã được nghiên cứu thông qua phân tích wavelet và mô hình số. Phân tích wavelet đã được áp dụng để nhận diện các tín hiệu phổ chính của các sự kiện dị thường nhiệt độ bề mặt biển trong khu vực BMC và ở Eo biển Drake như một nỗ lực ban đầu nhằm liên kết các vĩ độ trung bình và cao. Phương pháp mô hình số được sử dụng để làm rõ các động lực đại dương địa phương điều khiển những dị thường này. Phân tích wavelet chỉ ra giữa các băng tần 8 đến 12 năm là băng tần năng lượng nhất, đại diện cho lực tác động từ xa giữa các vĩ độ cao và trung bình. Các tần số khác được quan sát trong phân tích wavelet tại BMC chỉ ra rằng một phần biến động của nó cũng có thể bị ảnh hưởng bởi các sự kiện ở vĩ độ thấp, chẳng hạn như hiện tượng El Niño. Các thí nghiệm mô hình số được thực hiện cho các năm 1964 và 1992 (các giai đoạn lạnh và nóng của Chu kỳ El Niño-Nam Dương (ENSO)) đã tiết lộ hai hành vi khác biệt dẫn đến các dị thường nhiệt độ bề mặt biển âm và dương trong khu vực BMC. Hành vi đầu tiên xảy ra do dòng lạnh chảy về phía Bắc, dòng chảy từ Río de la Plata, và các quá trình nổi lên. Hành vi thứ hai được điều khiển bởi sự di chuyển về phía Nam của mặt trước dòng chảy Brazil (BC), sự thay đổi trong tỉ lệ xả nước của Río de la Plata, và rất có thể do các tương tác giữa không khí và biển. Cả hai hiện tượng đều có đặc điểm là hành vi tách rời giữa các lớp bề mặt và các lớp sâu hơn.

Từ khóa

#Nhiệt độ bề mặt biển #dị thường #giao thoa Brazil-Malvinas #phân tích wavelet #mô hình số #động lực học đại dương

Tài liệu tham khảo

Acevedo OC, Pezzi LP, Souza RB, Anabor V, Degrazia G (2010) Atmospheric boundary layer adjustment to the synoptic cycle at the Brazil-Malvinas Confluence South Atlantic Ocean. J Geophys Res 115: D22107. doi:10.1029/2009JD013785 Alexander MA, Penland C (1996) Variability in a mixed layer model of the upper ocean driven by stochastic atmospheric surface fluxes. J Climate 9:2424–2442 Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE (2010) World ocean atlas 2009 volume 2: salinity. In: Levitus S (ed) NOAA atlas NESDIS 69. U.S. Government Printing Office, Washington, D.C Barré N, Provost C, Saraceno M (2006) Spatial and temporal scales of the Brazil–Malvinas Current confluence documented by simultaneous MODIS Aqua 1.1-km resolution SST and color images. Adv Space Res 37:770–786 Barreiro M, Tippmann A (2008) Atlantic modulation of El Niño influence on summertime rainfall over southeastern South America. Geophys Res Lett 35. doi:10.1029/2008GL035019. issn: 0094-8276 Barros VR, Silvestri GE (2002) The relation between sea surface temperature at the subtropical south-central Pacific and precipitation in southeastern South America. J Climate 15:251–267 Barrucand M, Rusticucci M, Vargas W (2008) Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. J Geophys Res 113: D20111. doi:10.1029/2007JD009026 Bianchi AA, Giulivi CF, Piola AR (1993) Mixing in the Brazil/Malvinas Confluence. Deep-Sea Res 40:1345–1358 Bianchi AA, Piola AR, Collino GJ (2002) Evidence of double diffusion in the Brazil–Malvinas Confluence. Deep-Sea Res I 49:41–52 Bonatti JP, Rao VB (1999) Meso escale perturbations and thermohaline fronts in the South Atlantic Ocean. Dyn Atmos Oceans 30:11–24. doi:10.1016/S0377-0265(99)00016-0 Carton AG, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017 Carton AG, Chepurin G, Cao X, Giese BS (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30:294–309 Chelton DB, Schlax MG, Witter DL, Richman JG (1990) GEOSAT altimeter observations of the surface circulation of the Southern Ocean. J Geophys Res 95:17,877–17,903. doi:10.1029/JC095iC10p17877 Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Stephens CM, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures. Natl Oceanogr Data Center, Silver Spring (17) Corre L, Terray L, Balmaseda M, Ribes A, Weaver A (2010) Can oceanic reanalysis be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? Clim Dyn 38:877–896 Cunningham AP, Barker PF (1996) Evidence for westward-flowing Weddell Sea deep water in the Falkland Trough, western South Atlantic. Deep-Sea Res 43:643–654 de Camargo R, Todesco E, Pezzi LP, de Souza RB (2013) Modulation mechanisms of marine atmospheric boundary layer at the Brazil-Malvinas Confluence region. J Geophys Res Atmos 118. doi:10.1002/jgrd.50492 Diaz AF, Studzinski CD, Mechoso CR (1998) Relationships between precipitation anomalies in Uruguay and Southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J Climate 11:251–271 Eremy WJ, Thomson RE (2001) Data analysis methods in physical oceanography. 2nd ed. Elsevier, 638 p Ferrari R, Provost C, Renault A, Sennéchael N, Barré N, Park Y-H, Lee JH (2012) Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin. J Geophys Res 117, C12024, doi:10.1029/2012JC008264 Fetter AFH and Matano R (2008) On the origins of the variability of the Malvinas Current in a global, eddy-permitting numerical simulation. J Geophys Res 113, C11018. doi:10.1029/2008JC004875 Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev Notes Correspondence 119:1293–1303 Garcia CAE, Sarma YVB, Mata MM, Garcia VMT (2004) Chlorophyll variability and eddies in the Brazil-Malvinas Confluence region. Deep-Sea Res 51:159–172 Garzoli SL, Giulivi C (1994) What forces the variabillity of the southwestern Atlantic boundary currents? Deep-Sea Res I 41:1527–15550 Garzoli SL, Gordon AL (1996) Origins and variability of the Benguela Current. J Geophys Res 101:897–906 Garzoli SL, Matano R (2011) The South Atlantic and the Atlantic meridional overturning circulation. Deep-Sea Res II 58:1837–1847 Goni G, Wainer I (2001) Investigation of the Brazil Current front dynamics from altimeter data. J Geophys Res 106:31,117–31,128. doi:10.1029/2000JC000396 Gordon AL, Greengrove CL (1986) Geostrophic circulation of the Brazil-Falkland Confluence. Deep Sea Res Part A 573–585 Griffies SM, Hallberg RW (2000) Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946 Griffies SM, Gnanadesikan A, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, Rosati A, Russell JL, Samuels BL, Spelman MJ, Winton M, Zhang R (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79 Hoskins BJ, Hodges KIA (2005) A new perspective on Southern Hemisphere storm tracks. J Climate 18:4108–4130 Katsumata K, Masuda S (2013) Variability in Southern Hemisphere ocean circulation from the 1980s to the 2000s. J Phys Oceanogr 43(9):1981–2007 Kidson JW (1999) Principal modes of Southern Hemisphere low frequency variability obtained from NCEP-NCAR reanalysis. J Climate 12:2808–2830 Klein B, Molinari RL, Muller TJ, Siedler G (1995) A transatlantic section at 14.5°N: meridional volume and heat fluxes. J Mar Res 53:929–957 Large WG, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/T-460 + STR. CGD Division of the National Center for Atmospheric Research, USA Large WG, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3 Legeckis R, Gordon AL (1982) Satellite observations of the Brazil and Falkland Currents—1975 to 1976 and 1978. Deep-Sea Res 29:375–401 Lentini CAD, Podestá GG, Campos EJD, Olson DB (2001) Sea surface temperature anomalies on the western South Atlantic from 1982 to 1994. Cont Shelf Res 21:89–112 Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World ocean atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA atlas NESDIS 68. U.S. Government Printing Office, Washington, D.C, 184 pp Lübbecke JF, McPhaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Climate 26(16):5965–5980 Maamaatuaiahutapu K, Garçon VC, Provost C, Boulahdid M, Osiroff AP (1992) Brazil-Malvinas Confluence: water mass composition. J Geophys Res 97:9493–9506 Matano RP, Schlax MG, Chelton MG (1993) Seasonal variability in the southwestern Atlantic. J Geophys Res 98:18,027–18,035 Möller OO, Piola AR, Freitas AC, Campos AJD (2008) The effects of river discharge and seasonal winds on the shelf o southeastern South America. Cont Shelf Res 28:1607–1624. doi:10.1016/j.csr.2008.03.012 Namias J, Born RM (1974) Further studies of temporal coherence in North Pacific sea surface temperatures. J Geophys Res 79:797–798 Olson D, Podesta G, Evans R, Brown O (1988) Temporal variations in the separation of the Brazil and Malvinas Currents. Deep-Sea Res 35:1971 Pacanovsky RC, Griffies SM (1999) “The MOM 3 manual,” Geophys Fluid Dynam Labor, NOAA Princenton Palma ED, Matano RP, Piola AR (2008) A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res 113:1–22. doi:10.1029/2007JC004720, C11010 Parker DE, Jones PD, Folland CK, Bevan A (1994) Interdecadal changes of surface temperature since the late nineteenth century. J Geophys Res 99:14373–14399 Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26(1):1–73 Pezzi LP, Cavalcanti I (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212 Pezzi LP, Souza RB, Dourado MS, Garcia CAE, Mata MM, Silva-Dias MAF (2005) Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophys Res Lett 32: L22603, doi:10.1029/2005GL023866 Pezzi LP, Souza RB, Acevedo O, Wainer I, Mata MM, Garcia CAE, Camargo R (2009) Multi-year measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas Confluence region. J Geophys Res 114:D19103. doi:10.1029/2008JD011379 Piola AR, Matano RP (2001) In: Thorpe SA (ed) Brazil and Falklands (Malvinas) Currents. Encyclopedia of ocean sciences. Elsevier, New York, pp 340–349 Piola AR, Campos EJD, Möller OO, Charro M, Martinez C (2000) The Subtropical shelf front off eastern South America. J Geophys Res 105:6565–6578 Provost C, Garçon V, Falcon LM (1996) Hydrographic conditions in the surface layers over the slope-open ocean transition area near the Brazil-Malvinas Confluence during austral summer 1990. Cont Shelf Res 162:215–219 Rao VB, Do Carmo A, Franchito S (2003) Interannual variations of the storm tracks in the Southern Hemisphere and their connections with the Antarctic Oscillation. Int J Climatol 23:1537–1545. doi:10.1002/joc.948 Romero SL, Piola AR, Charo M, Garcia CE (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res 111: C05021 doi:10.1029/2005JC003244 Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res 109: C05027, doi:10.1029/2003JC002127 Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962 Souza RB, Mata MM, Garcia CAE, Kampel M, Oliveira EN, Lorenzzetti JA (2006) Multisensor satellite and in situ measurements of a warm core eddy south of the Brazil-Malvinas Confluence region. Remote Sens Environ 100:52–66. doi:10.1016/j.rse.2005.09.018 Spadone A, Provost C (2009) Variations in the Malvinas Current volume transport since 1992. J Geophys Res 114, C02002. doi:10.1029/2008JC004882 Thompson DWJ, Wallace JM (2000) Annular mode in the extratropical circulation. Part I: month-to-month variability. J Climate 13:1000–1016 Tokinaga H, Tanimoto Y, Xie S-P (2005) SST-induced wind variations over Brazil-Malvinas Confluence: satellite and in-situ observations. J Climate 18:3470–3482 Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78 Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777 Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14:1697–1701 Venegas SA, Mysak LA, Straub DN (1996) Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys Res Lett 23:2673–2676 Vera C, Silvestri G, Barros V, Carril A (2004) Differences in El Niño response over the Southern Hemisphere. J Climate 17:1741–1753 Vivier F, Provost C, Meredith MP (2001) Remote and local forcing in the Brazil-Malvinas region. J Phys Oceanogr 31(4):892–913 Wainer I, Venegas S (2002) South Atlantic variability in the climate system model. J Climate 15:1408–1420 Witter DL, Gordon AL (1999) Interannual variability of South Atlantic circulation from 4 years of TOPEX/POSEIDON satellite altimeter observations. J Geophys Res 104(C9):20,927–20,948 Xie S-P (2004) Satellite observations of cool ocean-atmosphere interaction. BAMS 195–208 Zhang R, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming El Niño change on scales in the Tropical Pacific. Nature 391:879–882 Zhu J, Huang B, Wu Z (2012) The role of ocean dynamics in the interaction between the Atlantic meridional and equatorial modes. J Climate 25(10):3583–3598