Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens
Tóm tắt
Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase) and allergenic proteins could be identified as (part of) potential linear epitopes. Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity.
Tài liệu tham khảo
James C: Global Review of Commercialized Transgenic Crops: 2001. Ithaca, International Service for the Acquisition of Agri-biotech Applications 2001. [http://www.isaaa.org/publications/briefs/Brief_24.htm]
Metcalfe DD, Astwood JD, Townsend R, Sampson HA, Taylor SL, Fuchs RL: Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr 1996, 36(Supp):S165-S186.
FAO/WHO: Draft Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants (ALINORM 01/34A). Rome, Codex Alimentarius Committee, Food and Agriculture Organisation of the United Nations 2002. [http://www.who.int/fsf/GMfood/codex_index.htm]
FAO/WHO: Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology – Allergenicity of Genetically Modified Foods – Rome, 22 – 25 January 2001. Rome, Food and Agriculture Organisation of the United Nations 2001. [http://www.fao.org/es/esn/food/pdf/allergygm.pdf]
FAO/WHO: Report of the Working Group 12 September 2001, Ad Hoc Open-Ended Working Group on Allergenicity, Vancouver, 10–12 September 2001, Hosted by the Government of Canada. Rome, Food and Agriculture Organisation of the United Nations 2001. [ftp://ftp.fao.org/codex/ccfbt3/wgreport_e.pdf]
Oehlschlager S, Reece P, Brown A, Hughson E, Hird H, Chisholm J, Atkinson H, Meredith C, Pumphrey R, Wilson P, Sunderland J: Food allergy – towards predictive testing for novel foods. Food Addit Contam 2001, 18: 1099–1107. 10.1080/02652030110050131
Taylor SL: Protein allergenicity assessment of foods produced through agricultural biotechnology. Annu Rev Pharmacol Toxicol 2002, 42: 99–112. 10.1146/annurev.pharmtox.42.082401.130208
Gendel SM: The use of amino acid sequence alignments to assess potential allergenicity of proteins used in genetically modified foods. Adv Food Nutr Res 1998, 42: 45–62.
Becker WM: Sequence homology and allergen structure (Topic 4). In: Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology – Allergenicity of Genetically Modified Foods – Rome, 22 – 25 January 2001. Rome, Food and Agriculture Organisation of the United Nations 2001. [http://www.fao.org/es/esn/food/pdf/bi06al.pdf]
Hileman RE, Silvanovich A, Goodman RE, Rice EA, Holleschak G, Astwood JD, Hefle SL: Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int Arch Allergy Immunol 2002, 128: 280–291. 10.1159/000063861
Kolaskar AS, Kulkarni Kale U: Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese Encephalitis Virus. Virology 1999, 261: 31–42. 10.1006/viro.1999.9859
Garcia Casado G, Sanchez Monge R, Chrispeels MJ, Armentia A, Salcedo G, Gomez L: Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6: 471–477.
Pellequer JL, Westhof E, Van Regenmortel MHV: Predicting location of continuous epitopes in proteins from their primary structures. Methods Enzymol 1991, 203: 176–201.
Hopp TP, Woods KR: Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 1981, 78: 3824–3828.
Jameson BA, Wolf H: The antigenic index: a novel algorithm for predicting antigenic determinants. CABIOS 1988, 4: 181–186.
Vuento M, Paananen K, Vihinen Ranta M, Kurppa A: Characterization of antigenic epitopes of potato virus Y. Biochim Biophys Acta 1993, 1162: 155–160. 10.1016/0167-4838(93)90142-E
Van Regenmortel MH, Pellequer JL: Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res 1994, 7: 224–228.
Hopp TP: Protein surface analysis. Methods for identifying antigenic determinants and other interaction sites. J Immunol Meth 1986, 88: 1–18. 10.1016/0022-1759(86)90045-1
Smith AM, Chapman MD: Localization of antigenic sites on Der p 2 using oligonucleotide-directed mutagenesis targeted to predicted surface residues. Clin Exp Allergy 1997, 27: 593–599. 10.1046/j.1365-2222.1997.460852.x
Adams SL, Barnett D, Walsh BJ, Pearce RJ, Hill DJ, Howden MEH: Human IgE-binding synthetic peptides of bovine β-lactoglobulin and α-lactalbumin. In vitro cross-reactivity of the allergens. Immunol Cell Biol 1991, 69: 191–197.
Ganglberger E, Sponer B, Scholl I, Wiedermann U, Baumann S, Hafner C, Breiteneder H, Suter M, Boltz Nitulescu G, Scheiner O, Jensen Jarolim E: Monovalent fusion proteins of IgE mimotopes are safe for therapy of type I allergy. FASEB J 2001, 15: 2524–2526.
Lehrer SB, Ayuso R, Reese G: Current understanding of food allergens. Ann N Y Acad Sci 2002, 964: 69–85.
Ayuso R, Reese G, Leong Kee S, Plante M, Lehrer SB: Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol 2002, 129: 38–48. 10.1159/000065172
Ivanciuc O, Schein CH, Braun W: Data mining of sequences and 3D structures of allergenic proteins. Bioinformatics 2002, 18: 1358–1364. 10.1093/bioinformatics/18.10.1358
McReynolds LA, Kennedy MW, Selkirk ME: The polyprotein allergens of nematodes. Parasitol Today 1993, 9: 403–406. 10.1016/0169-4758(93)90046-I
Shanti KN, Martin BM, Nagpal S, Metcalfe DD, Rao PV: Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 1993, 151: 5354–5463.
Subba-Rao PV, Rajagopal D, Ganesh KA: B- and T-cell epitopes of tropomyosin, the major shrimp allergen. Allergy 1998, 53(46 Suppl):44–47.
Ayuso R, Lehrer SB, Reese G: Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 2002, 127: 27–37. 10.1159/000048166
Reese G, Ayuso R, Carle T, Lehrer SB: IgE-binding epitopes of shrimp tropomyosin, the major allergen Pen a 1. Int Arch Allergy Immunol 1999, 118: 300–301. 10.1159/000024108
Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P, Tumer NE: Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Biotechnology 1990, 8: 127–134.