Screening of stable internal reference genes by quantitative real-time PCR in humpback grouper Cromileptes altivelis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andersen C L, Jensen J L, Ørntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5 245–5 250, https://doi.org/10.1158/0008-5472.CAN-04-0496.
Asim M, Babu V S, Qin Z D, Zhao L J, Su J G, Li J, Tu J G, Kou H Y, Lin L. 2019. Inhibition of Cyclophilin A on the replication of red spotted grouper nervous necrosis virus associates with multiple pro-inflammatory factors. Fish & Shellfish Immunology, 92: 172–180, https://doi.org/10.1016/j.fsi.2019.05.064.
Chen H, Cai X Y, Yu X W. 2018. Main diseases and control of grouper. Livestock and Poultry Industry, 29(1): 9–11, https://doi.org/10.19567/j.cnki.1008-0414.2018.01.005. (in Chinese)
Chen X J, Zhang X Q, Huang S, Cao Z J, Qin Q W, Hu W T, Sun Y, Zhou Y C. 2017. Selection of reference genes for quantitative real-time RT-PCR on gene expression in Golden Pompano (Trachinotus ovatus). Polish Journal of Veterinary Sciences, 20(3): 583–594, https://doi.org/10.1515/pjvs-2017-0071.
Craig M T, Sadovy de Mitcheson Y J, Heemstra P C. 2011. Groupers of the World: A Field and Market Guide. National Inquiry Services Centre, Gland, Switzerland.
Czechowski T, Stitt M, Altmann T, Udvardi M K, Scheible W R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1): 5–17, https://doi.org/10.1104/pp.105.063743.
Dang W, Sun L. 2011. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 30(2): 720–728, https://doi.org/10.1016/j.fsi.2010.12.028.
Dobnik D, Spilsberg B, Košir A B, Holst-Jensen A, Žel J. 2015. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Analytical Chemistry, 87(16): 8 218–8 226, https://doi.org/10.1021/acs.analchem.5b01208.
Fernandes J M O, Mommens M, Hagen Ø, Babiak I, Solberg C. 2008. Selection of suitable reference genes for realtime PCR studies of Atlantic halibut development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150(1): 23–32, https://doi.org/10.1016/j.cbpb.2008.01.003.
Filby A L, Tyler C R. 2007. Appropriate ‘housekeeping’ genes for use in expression profiling the effects of environmental estrogens in fish. BMC Molecular Biology, 8: 10, https://doi.org/10.1186/1471-2199-8-10.
Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6(4): 279–284, https://doi.org/10.1038/sj.gene.6364190.
Jain M, Nijhawan A, Tyagi A K, Khurana J P. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345(2): 646–651, https://doi.org/10.1016/j.bbrc.2006.04.140.
Kang I N, Lee C Y, Tan S C. 2019. Selection of best reference genes for qRT-PCR analysis of human neural stem cells preconditioned with hypoxia or baicalein-enriched fraction extracted from Oroxylum indicum medicinal plant. Heliyon, 5(7): e02156, https://doi.org/10.1016/j.heliyon.2019.e02156.
Li H H, Hou X M. 2015. Real-time fluorescent quantitative PCR and its application in pathogen detection. Occupation and Health, 31(18): 2 586–2 589, https://doi.org/10.13329/j.cnki.zyyjk.2015.0893. (in Chinese with English abstract)
Li W Z, Liu L, Zhang H, Xiao Q. 2019. Applications of PCR technology in diseases diagnosis in aquaculture animals. Fisheries Science, 38(5): 726–733, https://doi.org/10.16378/j.cnki.1003-1111.2019.05.021. (in Chinese)
Luo H L, Luo K C, Luo L P, Li E X, Guan B C, Xiong D J, Sun B T, Peng K, Yang B Y. 2014. Evaluation of candidate reference genes for gene expression studies in Cymbidium kanran. Scientia Horticulturae, 167: 43–48, https://doi.org/10.1016/j.scienta.2013.12.030.
Luo M, Chen F X, Liu L L, Li W D, Zeng G Q, Tan W, Li X M. 2013. Progress in disease research of grouper aquaculture in China. Fisheries Science, 32(9): 549–554, https://doi.org/10.3969/j.issn.1003-1111.2013.09.010. (in Chinese)
Mahoney D J, Carey K, Fu M H, Snow R, Cameron-Smith D, Parise G, Tarnopolsky M A. 2004. Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiological Genomics, 18(2): 226–231, https://doi.org/10.1152/physiolgenomics.00067.2004.
McCurley A T, Callard G V. 2008. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Molecular Biology, 9: 102, https://doi.org/10.1186/1471-2199-9-102.
Najafpanah M J, Sadeghi M, Bakhtiarizadeh M R. 2013. Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of Capra hircus. PLoS One, 8(12): e83041, https://doi.org/10.1371/journal.pone.0083041.
Olsvik P A, Søfteland L, Lie K K. 2008. Selection of reference genes for qRT-PCR examination of wild populations of Atlantic cod Gadus morhua. BMC Research Notes, 1(1): 47, https://doi.org/10.1186/1756-0500-4-456.
Ou Y J, Liu J H, Li J E, Wu S Q, Xie M J. 2015. Morphology and histology of head-kidney and spleen in Cromileptes altivelis. Journal of Southern Agriculture, 46(11): 2 034–2 039, https://doi.org/10.3969/j:issn.2095-1191.2015.11.2034. (in Chinese with English abstract)
Øvergård A C, Nerland A H, Patel S. 2010. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Molecular Biology, 11: 36, https://doi.org/10.1186/1471-2199-11-36.
Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper-excel-based tool using pairwise correlations. Biotechnology Letters 26(6): 509–515, https://doi.org/10.1023/b:bile.0000019559.84305.47.
Pooljun C, Direkbusarakom S, Chotipuntu P, Hirono I, Wuthisuthimethavee S. 2016. Development of a TaqMan real-time RT-PCR assay for detection of Covert mortality nodavirus (CMNV) in penaeid shrimp. Aquaculture, 464: 445–450, https://doi.org/10.1016/j.aquaculture.2016.06.044.
Resende M V, Lucio A C, Perini A P, Oliveira L Z, Almeida A O, Alves B C A, Moreira-Filho C A, Santos I W, Hossepian de Lima V F M. 2011. Comparative validation using quantitative real-time PCR (qPCR) and conventional PCR of bovine semen centrifuged in continuous density gradient. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(3): 544–551, https://doi.org/10.1590/S0102-09352011000300002.
Small B C, Murdock C A, Bilodeau-Bourgeois A L, Peterson B C, Waldbieser G C. 2008. Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(3): 296–304, https://doi.org/10.1016/j.cbpb.2008.07.010.
Sun Y, He M W, Cao Z J, Xie Z Y, Liu C S, Wang S F, Guo W L, Zhang X, Zhou Y C. 2018. Effects of dietary administration of Lactococcus lactis HNL12 on growth, innate immune response, and disease resistance of humpback grouper (Cromileptes altivelis). Fish & Shellfish Immunology, 82: 296–303, https://doi.org/10.1016/j.fsi.2018.08.039.
Sun Y, Sun L. 2015. CsBAFF, a teleost B cell activating factor, promotes pathogen-induced innate immunity and vaccine-induced adaptive immunity. PLoS One, 10(8): e0136015. https://doi.org/10.1371/journal.pone.0136015.
Sun Y, Xiang Y J, He M W, Zhang X, Wang S F, Guo W L, Liu C S, Cao Z J, Zhou Y C. 2019. Evaluation of Lactococcus lactis HNL12 combined with Schizochytrium limacinum algal meal in diets for humpback grouper (Cromileptes altivelis). Fish & Shellfish Immunology, 94: 880–888, https://doi.org/10.1016/j.fsi.2019.09.059.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3 (7): research0034.1, https://doi.org/10.1186/gb-2002-3-7-research0034.
Wan Y L, Hong A Y, Zhang Y X, Liu Y. 2019. Selection and validation of reference genes of Paeonia lactiflora in growth development and light stress. Physiology and Molecular Biology of Plants, 25(4): 1 097–1 105, https://doi.org/10.1007/s12298-019-00684-2.
Wang Q, Ishikawa T, Michiue T, Zhu B L, Guan D W, Maeda H. 2012. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. International Journal of Legal Medicine, 126(6): 943–952, https://doi.org/10.1007/s00414-012-0774-7.
Yang Y W, Chen M K, Yang B Y, Huang X J, Zhang X R, He L Q, Zhang J, Hua Z C. 2015. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Applied and Environmental Microbiology, 81(19): 6 749–6 756, https://doi.org/10.1128/AEM.01906-15.
Zhang B C, Sun L, Xiao Z Z, Hu Y H. 2014. Quantitative real time RT-PCR study of pathogen-induced gene expression in rock bream (Oplegnathus fasciatus): internal controls for data normalization. Marine Genomics, 15: 75–84, https://doi.org/10.1016/j.margen.2014.03.001.
Zhang M, Xing Y Z, Zhen Y, Mi T Z, Yu Z G. 2020. Screening of the reference genes of Skeletonema marinoi under different concentration of Fe3+ conditions in real-time quantitative PCR analysis. Haiyang Xuebao, 42(2): 124–133, https://doi.org/10.3969/j.issn.0253-4193.2020.02.013. (in Chinese with English abstract)