Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sàng lọc Actinomycetia biển với các hợp chất sinh học từ trầm tích ven biển và sâu ở tây nam Đài Loan
Tóm tắt
Mục tiêu của nghiên cứu này là khảo sát Actinomycetia biển (trước đây thuộc lớp Actinobacteria) từ các trầm tích ven biển tại Cảng Kaohsiung và trầm tích biển sâu ở Kênh Bashi, cũng như sàng lọc chúng để xác định khả năng sản xuất các chất chuyển hóa có hoạt tính kháng khuẩn và tế bào độc. Tổng cộng có 811 chủng actinomycetes đã được phân lập từ sáu mẫu trầm tích biển; 70 chủng (8,63%) cho thấy hoạt tính kháng khuẩn bằng cách sử dụng phương pháp đĩa thạch đối với ít nhất một trong hai chủng thử nghiệm của Bacillus subtilis và Staphylococcus aureus. Hai mươi hai chủng có hoạt tính kháng khuẩn cao đã được chọn để tiến hành phân tích trình tự 16S rDNA và kiểm tra yêu cầu về nước biển. Phân tích hệ phylogenetic của các trình tự cho thấy rằng các chủng này là thành viên của họ Streptomycetaceae (1 chủng) và năm giống actinomycete: Streptomyces (15), Actinoalloteichus (2), Saccharomonospora (2), Saccharopolyspora (1), và Nocardiopsis (1). Sự khác biệt đáng kể về dân số actinomycete được tìm thấy trong các trầm tích ven biển và sâu. Mười bốn chủng (63,6%) được phát hiện là vi khuẩn biển bắt buộc, và 2 (9,1%) chủng cho thấy sự phát triển tốt hơn trong sự hiện diện của nước biển. Hai chủng, BC01-N-GI05 và BC01-N-MA22, thể hiện hoạt tính kháng khuẩn đối với ít nhất bốn vi sinh vật thử nghiệm cũng như độc tính tế bào mạnh (IC50 ≤ 1 µg/mL) đối với ít nhất hai dòng tế bào ung thư, được xem là các ứng viên tiềm năng cho việc tách chiết sản phẩm thiên nhiên và xác định các thành phần có hoạt tính sinh học. Kết quả của chúng tôi cho thấy rằng trầm tích biển từ Cảng Kaohsiung và Kênh Bashi có thể là những nguồn tiềm năng của Actinomycetia sản xuất kháng sinh.
Từ khóa
#Actinomycetia biển #trầm tích #hoạt chất sinh học #kháng khuẩn #độc tính tế bàoTài liệu tham khảo
Abneuf MA, Khrishnan A, Aravena MG, Pang K-L, Convey P, Alias SA (2016) Antimicrobial activity of microfungi from maritime Antarctic soil. Czech Polar Rep 6:141–154. https://doi.org/10.5817/CPR2016-2-13
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Arakawa K (2018) Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van Leeuwenhoek 111:743–751. https://doi.org/10.1073/pnas.1711842115
Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci U S A 115:6506–6511. https://doi.org/10.1073/pnas.1711842115
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. https://doi.org/10.1093/nar/gks1195
Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot Res 65:385–395. https://doi.org/10.1038/ja.2012.27
Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499. https://doi.org/10.1016/j.tim.2007.10.004
Chakraborty RD, Chakraborty K, Thilakan B (2015) Isolation and characterization of antagonistic Streptomyces spp. from marine sediments along the southwest coast of India. IJMS 44:1742–1749
Chen YH, Kuo J, Sung PJ, Chang YC, Lu MC, Wong TY, Liu JK, Weng CF et al (2012) Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J Microbiol Biotechnol 28:3269–3279. https://doi.org/10.1007/s11274-012-1138-7
Chen L, Wang Z, Du S, Wang G (2021) Antimicrobial activity and functional genes of Actinobacteria from coastal wetland. Curr Microbiol 78:3058–3067. https://doi.org/10.1007/s00284-021-02560-3
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244
Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335
Davies-Bolorunduro OF, Osuolale O, Saibu S, Adeleye IA, Aminah NS (2021) Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 7:e07710. https://doi.org/10.1016/j.heliyon.2021.e07710
de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050. PLoS Med 13:e1002184. https://doi.org/10.1371/journal.pmed.1002184
Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot Res 63:423–430. https://doi.org/10.1038/ja.2010.62
Duncan K, Haltli B, Gill KA, Kerr RG (2014) Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity. Mar Drugs 12:899–925. https://doi.org/10.3390/md12020899
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42:355–357. https://doi.org/10.1002/anie.200390115
Felsenstein J (1985) Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161. https://doi.org/10.2307/2413323
Flemer B, Kennedy J, Margassery LM, Morrissey JP, O'Gara F, Dobson AD (2012) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J Appl Microbiol 112:289–301. https://doi.org/10.1111/j.1365-2672.2011.05211.x
Gao HM, Xie PF, Zhang XL, Yang Q (2021) Isolation, phylogenetic and Gephyromycin metabolites characterization of new exopolysaccharides-bearing Antarctic Actinobacterium from feces of emperor penguin. Mar Drugs 19. https://doi.org/10.3390/md19080458
Gozari M, Zaheri A, Jahromi ST, Gozari M, Karimzadeh R (2019) Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int Microbiol 22:521–530. https://doi.org/10.1007/s10123-019-00083-3
Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, Morono Y, D'Hondt S et al (2020) Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci U S A 117:27587–27597. https://doi.org/10.1073/pnas.1919139117
Ivanitskaia LP, Singal EM, Bibikova MV, Vostrov SN (1978) Directed isolation of Micromonospora generic cultures on a selective medium with gentamycin. Antibiotiki 23:690–692
Jensen PR, Fenical W (1995) The relative abundance and seawater requirements of gram-positive bacteria in near-shore tropical marine samples. Microb Ecol 29:249–257. https://doi.org/10.1007/bf00164888
Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048. https://doi.org/10.1111/j.1462-2920.2005.00785.x
Jung SY, Kim HS, Song JJ, Lee SG, Oh TK, Yoon JH (2007) Aestuariimicrobium kwangyangense gen. nov., sp. nov., an LL-diaminopimelic acid-containing bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 57:2114–2118. https://doi.org/10.1099/ijs.0.64917-0
Kamjam M, Sivalingam P, Deng Z, Hong K (2017) Deep sea actinomycetes and their secondary metabolites. Front Microbiol 8:760. https://doi.org/10.3389/fmicb.2017.00760
Khan ST, Takagi M, Shin-ya K (2010) Diversity, salt requirement, and antibiotic production of Actinobacteria isolated from marine sponges. Actinomycetologica 24:18–23. https://doi.org/10.3209/saj.SAJ240101
Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0
Kuo J, Chang CF, Chi WC (2021) Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol 66:385–397. https://doi.org/10.1007/s12223-021-00854-4
Kurtbӧke Dİ (2017) Ecology and habitat distribution of Actinobacteria. In: Wink J, Mohammadipanah F, Hamedi J (eds) Biology and biotechnology of Actinobacteria. Springer International Publishing, Cham, pp 123–149. https://doi.org/10.1007/978-3-319-60339-1_6
Lu M-C, Du Y-C, Chuu J-J, Hwang S-L, Hsieh P-C, Hung C-S, Chang F-R, Wu Y-C (2009) Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Arch Toxicol 83:121–129. https://doi.org/10.1007/s00204-008-0337-3
Mahapatra GP, Raman S, Nayak S, Gouda S, Das G, Patra JK (2020) Metagenomics approaches in discovery and development of new bioactive compounds from marine actinomycetes. Curr Microbiol 77:645–656. https://doi.org/10.1007/s00284-019-01698-5
Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766. https://doi.org/10.1099/ijs.0.63625-0
Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom STC, Lam KS, Mosca DA et al (2005) Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243. https://doi.org/10.1021/np049725x
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine Actinobacteria. Microbiol Res 169:262–278. https://doi.org/10.1016/j.micres.2013.07.014
McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment — a review. Gene 115:189–192. https://doi.org/10.1016/0378-1119(92)90558-7
Meena B, Anburajan L, Vinithkumar NV, Kirubagaran R, Dharani G (2019) Biodiversity and antibacterial potential of cultivable halophilic actinobacteria from the deep sea sediments of active volcanic Barren Island. Microb Pathog 132:129–136. https://doi.org/10.1016/j.micpath.2019.04.043
Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011. https://doi.org/10.1128/AEM.68.10.5005-5011.2002
Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248. https://doi.org/10.3390/md7020210
Ouchene R, Intertaglia L, Zaatout N, Kecha M, Suzuki MT (2022) Selective isolation, antimicrobial screening and phylogenetic diversity of marine actinomycetes derived from the Coast of Bejaia City (Algeria), a polluted and microbiologically unexplored environment. J Appl Microbiol 132:2870–2882. https://doi.org/10.1111/jam.15415
Özcan K, Aksoy SÇ, Kalkan O, Uzel A, Hames-Kocabas EE, Bedir E (2013) Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. J Soils Sediments 13:1493–1501. https://doi.org/10.1007/s11368-013-0734-y
Patin NV, Schorn M, Aguinaldo K, Lincecum T, Moore BS, Jensen PR (2017) Effects of actinomycete secondary metabolites on sediment microbial communities. Appl Environ Microbiol 83:e02676–e02616. https://doi.org/10.1128/aem.02676-16
Priyanka S, Jayashree M, Shivani R, Anwesha S, Bhaskara Rao KV, I AE (2019) Characterisation and identification of antibacterial compound from marine actinobacteria: in vitro and in silico analysis. Journal of Infection and Public Health 12: 83-89. https://doi.org/10.1016/j.jiph.2018.09.005
Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111. https://doi.org/10.1007/s11274-009-0113-4
Rante H, Alam G, Usmar U, Anwar R, Ali A (2016) Isolation of sponge bacterial symbionts from Kodingareng Keke Island-Makassar Indonesia which is potential as a producer of antimicrobial compounds. J Pure Appl Microbiol 16:737–743. https://doi.org/10.22207/JPAM.16.1.79
Ribeiro I, Girão M, Alexandrino DAM, Ribeiro T, Santos C, Pereira F, Mucha AP, Urbatzka R et al (2020) Diversity and bioactive potential of Actinobacteria isolated from a coastal marine sediment in Northern Portugal. Microorganisms 8:1691. https://doi.org/10.3390/microorganisms8111691
Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M et al (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot Res 57:271–279. https://doi.org/10.7164/antibiotics.57.271
Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23:127–149. https://doi.org/10.1016/0378-8741(88)90001-3
Riyanti BW, Liu Y, Sharma A, Mihajlovic S, Hartwig C, Leis B, Rieuwpassa FJ et al (2020) Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep 10:19614. https://doi.org/10.1038/s41598-020-76256-2
Salam N, Jiao JY, Zhang XT, Li WJ (2020) Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 70:1331–1355. https://doi.org/10.1099/ijsem.0.003920
Selvin J, Shanmughapriya S, Gandhimathi R, Seghal Kiran G, Rajeetha Ravji T, Natarajaseenivasan K, Hema TA (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83:435–445. https://doi.org/10.1007/s00253-009-1878-y
Sharma S, Fulke AB, Chaubey A (2019) Bioprospection of marine actinomycetes: recent advances, challenges and future perspectives. Acta Oceanol Sin 38:1–17. https://doi.org/10.1007/s13131-018-1340-z
Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380. https://doi.org/10.1111/j.1574-6941.2008.00644.x
Solyanikova IP, Golovleva LA (2015) Physiological and biochemical properties of actinobacteria as the basis of their high biodegradative activity. Appl Biochem Microbiol 51:143–149. https://doi.org/10.1134/S0003683815020180
Stern NJ, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Levchuk VP et al (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50:3111–3116. https://doi.org/10.1128/aac.00259-06
Stincone P, Brandelli A (2020) Marine bacteria as source of antimicrobial compounds. Crit Rev Biotechnol 40:306–319. https://doi.org/10.1080/07388551.2019.1710457
Subramani R, Sipkema D (2019) Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 17:249. https://doi.org/10.3390/md17050249
Suthindhiran K, Kannabiran K (2009) Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in Southern India. J Med Mycol 19:77–86. https://doi.org/10.1016/j.mycmed.2009.01.001
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. https://doi.org/10.1073/pnas.0404206101
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120
Teske A, Hinrichs KU, Edgcomb V, de Vera GA, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007. https://doi.org/10.1128/aem.68.4.1994-2007.2002
Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07
Wang W, Park KH, Lee J, Oh E, Park C, Kang E, Lee J, Kang H (2020) A new thiopeptide antibiotic, micrococcin P3, from a marine-derived strain of the bacterium Bacillus stratosphericus. Molecules 25:4383. https://doi.org/10.3390/molecules25194383
Yuan M, Yu Y, Li HR, Dong N, Zhang XH (2014) Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi shelf marine sediments in the Arctic Ocean. Mar Drugs 12:1281–1297. https://doi.org/10.3390/md12031281