Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability

NanoImpact - Tập 11 - Trang 42-50 - 2018
Fazel Abdolahpur Monikh1, Antonia Praetorius1,2, Andrea Schmid1, Philipp Kozin1, Boris Meisterjahn1, Ekaterina Makarova1, Thilo Hofmann1,2, Frank von der Kammer1
1University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstr. 14, 1090 Vienna, Austria
2University of Vienna, Research Platform Nano-Norms-Nature, 1090 Vienna, Austria

Tài liệu tham khảo

Alvarez, 2009, Research priorities to advance eco-responsible nanotechnology, ACS Nano, 3, 1616, 10.1021/nn9006835 Baalousha, 2017, Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics, NanoImpact, 6, 55, 10.1016/j.impact.2016.10.005 Baun, 2017, Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials, NanoImpact, 8, 1, 10.1016/j.impact.2017.06.004 Berre, 1998, Perikinetic and Orthokinetic aggregation of hydrated colloids, J. Colloid Interface Sci., 199, 1, 10.1006/jcis.1997.5307 Buffle, 1998, A generalized description of aquatic colloidal interactions: the three-colloidal component approach, Environ. Sci. Technol., 32, 2887, 10.1021/es980217h Burns, 1997, A light scattering study of the fractal aggregation behavior of a model colloidal system, Langmuir, 13, 6413, 10.1021/la970303f Chen, 2006, Aggregation and deposition kinetics of fullerene (C60) nanoparticles, Langmuir, 22, 10994, 10.1021/la062072v Dale, 2015, Modeling Nanomaterial Environmental Fate in Aquatic Systems, Environ. Sci. Technol., 49, 12587, 10.1021/es505076w Domingos, 2009, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid, Environ. Sci. Technol., 43, 1282, 10.1021/es8023594 Domingos, 2010, Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate, Environ. Chem., 7, 61, 10.1071/EN09110 ECHA, 2016, Usage of (eco)toxicological data for bridging data gaps between and grouping of nanoforms of the same substance EEA El Badawy, 2010, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 44, 1260, 10.1021/es902240k Elimelech, 1998 Farré, 2011, Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment, TrAC Trends Anal. Chem., 30, 517, 10.1016/j.trac.2010.11.014 French, 2009, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43, 1354, 10.1021/es802628n Gallego-Urrea, 2014, Influence of different types of natural organic matter on titania nanoparticle stability: effects of counter ion concentration and pH. Environ Sci, Nano, 1, 181 Hammes, 2013, Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport, Water Res., 47, 5350, 10.1016/j.watres.2013.06.015 Hansen, 2008, Late lessons from early warnings for nanotechnology, Nat. Nanotechnol., 3, 444, 10.1038/nnano.2008.198 Hansen, 2017, A critical analysis of the environmental dossiers from the OECD sponsorship programme for the testing of manufactured nanomaterials, Environ. Sci.: Nano, 4, 282 Hjorth, 2017, Regulatory adequacy of aquatic ecotoxicity testing of nanomaterials, NanoImpact, 8, 28, 10.1016/j.impact.2017.07.003 Hotze, 2010, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment, J. Environ. Qual., 39, 1909, 10.2134/jeq2009.0462 Hristozov, 2009, Hazards and risks of engineered nanoparticles for the environment and human health, Sustain. For., 1, 1161, 10.3390/su1041161 Hull, 2012, Moving beyond mass: the unmet need to consider dose metrics in environmental Nanotoxicology studies, Environ. Sci. Technol., 46, 10881, 10.1021/es3035285 Kallay, 2002, Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles, J. Colloid Interface Sci., 253, 70, 10.1006/jcis.2002.8476 Kammer, 2010, Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing, Environ. Pollut., 158, 3472, 10.1016/j.envpol.2010.05.007 Keller, 2010, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol., 44, 1962, 10.1021/es902987d Kim, 2000, Fractal heteroaggregation of oppositely charged colloids, J. Colloid Interface Sci., 229, 607, 10.1006/jcis.2000.7028 Kühnel, 2014, The OECD expert meeting on ecotoxicology and environmental fate -towards the development of improved OECD guidelines for the testing of nanomaterials, Sci. Total Environ., 472, 347, 10.1016/j.scitotenv.2013.11.055 Lead, 2006, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem., 3, 159, 10.1071/EN06025 Limbach, 2005, Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations, Environ. Sci. Technol., 39, 9370, 10.1021/es051043o Liu, 2013, Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles, Environ. Sci. Technol., 47, 4113, 10.1021/es302447g Liu, 2013, Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale, Environ. Int., 59, 53, 10.1016/j.envint.2013.05.006 Loosli, 2013, TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability, Water Res., 47, 6052, 10.1016/j.watres.2013.07.021 Lyklema, 2005 Maynard, 2016, 'Safe handling of nanotechnology' ten years on, Nat. Nanotechnol., 11, 998, 10.1038/nnano.2016.270 Nowack, 2007, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 150, 5, 10.1016/j.envpol.2007.06.006 OECD, 2017 OECD Ottofuelling, 2011, Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior, Environ. Sci. Technol., 45, 10045, 10.1021/es2023225 Overbeek, 1980, The rule of Schulze and Hardy, Pure Appl. Chem., 52, 1151, 10.1351/pac198052051151 Pandey, 2000, Stability constants of metal–humic acid complexes and its role in environmental detoxification, Ecotoxicol. Environ. Saf., 47, 195, 10.1006/eesa.2000.1947 Petersen, 2015, Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations, Environ. Sci. Technol., 49, 9532, 10.1021/acs.est.5b00997 Petosa, 2010, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions, Environ. Sci. Technol., 44, 6532, 10.1021/es100598h Pettibone, 2008, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation, Langmuir, 24, 6659, 10.1021/la7039916 Praetorius, 2014, Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions, Environ. Sci. Technol., 48, 10690, 10.1021/es501655v Praetorius, 2014, The road to nowhere: equilibrium partition coefficients for nanoparticles, Environ. Sci.: Nano, 1, 317 Rasmussen, 2014 Reidy, 2013, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications, Materials, 6, 2295, 10.3390/ma6062295 Saleh, 2008, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications, Environ. Sci. Technol., 42, 7963, 10.1021/es801251c Salminen, 2005 Sharp, 2006, Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Sci. Total Environ., 363, 183, 10.1016/j.scitotenv.2005.05.032 Steinhäuser, 2017, Reliability of methods and data for regulatory assessment of nanomaterial risks, NanoImpact, 7, 66, 10.1016/j.impact.2017.06.001 Stone, 2010, Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation, Sci. Total Environ., 408, 1745, 10.1016/j.scitotenv.2009.10.035 Therezien, 2014, Importance of heterogeneous aggregation for NP fate in natural and engineered systems, Sci. Total Environ., 485-486, 309, 10.1016/j.scitotenv.2014.03.020 Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181 Velzeboer, 2014, Rapid settling of nanoparticles due to heteroaggregation with suspended sediment, Environ. Toxicol. Chem., 33, 1766, 10.1002/etc.2611 Yu, 2002, Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering, J. Phys. Chem. B, 106, 13106, 10.1021/jp021792h Zhu, 2013, Physicochemical properties determine nanomaterial cellular uptake, transport, and fate, Acc. Chem. Res., 46, 622, 10.1021/ar300031y