Schwinger và Đạo đức học của Lý thuyết Trường Lượng Tử

Springer Science and Business Media LLC - Tập 12 - Trang 295-323 - 2007
Edward MacKinnon1
1California State University, East Bay (Emeritus), Oakland, USA

Tóm tắt

Một cách giải thích tri thức luận về cơ học lượng tử dựa trên tuyên bố rằng những đặc điểm đặc trưng của cơ học lượng tử có thể được suy ra từ một số đặc điểm đặc trưng của cơ sở quan sát. Các biến thể cũ và mới của chủ đề này được liệt kê. Chương trình này có một thành công hạn chế trong cơ học lượng tử không tương đối. Vấn đề then chốt là nó có thể được mở rộng bao xa đến lý thuyết trường lượng tử mà không đưa ra các giả thuyết tồn tại chính đáng. Một cách lập trình C*-bao gồm lý thuyết trường lượng tử đại số, nhưng không phải là mô hình chuẩn. Phương pháp anabatic của Julian Schwinger đã mở rộng một cách lập khuôn chặt chẽ dựa trên đo đạc của cơ học lượng tử thông qua lý thuyết trường. Sự mở rộng của ông cũng đã loại trừ giả thuyết quark và mô hình chuẩn. Quark và tính bất biến gauge cục bộ là những giả thuyết vượt qua giới hạn của một cách giải thích tri thức luận về cơ học lượng tử. Ý nghĩa tồn tại được gán cho những tiến bộ này phụ thuộc vào vai trò được dành cho tồn tại.

Từ khóa


Tài liệu tham khảo

Accardi L. (1995). Can mathematics help solving the interpretational problems of quantum mechanics?. Il Nuovo Cimento 110B: 685–721 Arntzenius F. (1990). Casual paradoxes in special relativity. The British Journal for the Philosophy of Science, 41: 223–243 Atmanspacher, H., & Primas, H. (2002). Epistemic and ontic quantum realities. PhiScArchives, 938. Binétruy P. (2006). Supersymmetry: Theory, experiment and cosmology. Oxford University Press, Oxford Blackburn S. (1993). Essays in Quasi-Realism. Oxford University Press, New York Bohr N. and Rosenfeld L. (1933). On the question of the measurability of electromagnetic field quantities. In: Wheeler, J. and Zurek, W. (eds) Quantum theory and measurement., pp 478–522. Princeton University Press, Princeton Bohr N. (1950). Field and charge measurements in quantum electrodynamics. Physical Review, 78: 794–798 Boyd R. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19: 45–90 Cao T. (1998). Conceptual developments of 20th century field theories. Cambridge University Press, Cambridge Castellani E. (2002). Reductionism, emergence and effective field theories. Studies in History and Philosophy of Science B, 33: 251–267 Clifton, R., & Halvorson, H. (2001). Are rindler quanta real? Inequivalent particle concepts in quantum field theory. philsci-archive, 73. Clifton R., Bub J. and Halvorson H. (1994). Characterizing quantum theory in terms of information–theoretic constraints. Foundations of Physics, 33: 1561–1591 Clifton R. (1996). The properties of modal interpretations of quantum mechanics. British Journal for Philosophy of Science, 47: 371–398 Darrigol O. (1991). Coherence et complétude de la mécanique quantique: l’example de Bohr. Review d’Histoire de Sciences, 44: 137–179 Davidson D. (2001). Subjective, intersubjective, objective. Clarendon Press, Oxford Diecks D. (1988). The formalism of quantum theory: An objective description of reality?. Annalen der Physik 7: 174–190 Dieks D. (1989). Quantum Mechanics without the Projection Postulate and its Realistic Interpretation. Foundations of Physics, 19: 1395–1423 Dieks D. (1994). Modal interpretation of quantum mechanics, measurements and macroscopic. Physical Review A, 49: 2289–2300 Dirac P. (1935). The principles of quantum mechanics, (2nd. ed.). Cambridge University Press, Cambridge Dirac P. (1958). The principles of quantum mechanics, (4th ed.). Clarendon Press, Oxford Dirac, P. (1964). Foundations of quantum theory. Lecture at Yeshiva University. Feynman R. (1974). Structure of the Proton. Science, 183: 601–610 Flato, M., Fronsdal, C., & Milton, K. (1979). Selected Papers (1937–1976) of Julian Schwinger. Dordrecht: Holland: D. Reidel Publishing Company. Fourier, J. 1955[1822]. The analytical theory of heat. New York: Dover Fraser, D. (forthcoming). The problem of theory choice for the interpretation of quantum field theory. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 Philosophy of Science Association Meeting. Philosophy of Science Association. Fuchs, C. (2001). Quantum foundations in the light of quantum information. In A. Gonis, & P. Turchi (Eds.), Decoherence and its implications in quantum computation and information transfer: Proceedings of the NATO Advanced Research Workshop, Mykonos, Greece, June 25–30, 2000, 39–82. Amsterdam: IOS Press. Furth R. (1956). Investigations on the theory of Brownian Motion. Dover, New York Gell-Mann M and Ne’eman Y. (1964). The eightfold way. W. A. Benjamin, New York Glashow S. (1996). The Road to Electroweak Unification. In: Ng, Y. (eds) Julian Schwinger, the physicist, the Teacher and the man., pp. World Scientific, Singapore Gomatam, R. (forthcoming). Bohr’s interpretation and the copenhagen interpretation—Are they mutually exclusive? Philosophy of Science. Gottfried K. (1966). Quantum mechanics. Volume I: Fundamentals. W. A. Benjamin, New York Grinbaum A. (2004). Le rôle de l’information dans la théorie quantique. Dissertation: University of Paris, arXiv:quant-ph/0410071. Haag R. (1992). Local quantum physics: Fields, particles, algebras. Springer-Verlag, Berlin Halvorson H., Clifton R. (2002). No place for particles in relativistic quantum theories. Philosophy of Science 69, 1–28 Halvorson, H. & Muger, M. (2006). Algebraic quantum field theory. PhilSciArchives, 2633. Halvorson H. (2004). A note on information theoretic characterization of physical theories. Studies in History and Philosophy of Modern Physics, 35: 277–293 Healey R. (1989). The philosophy of quantum mechanics: An interactive interpretation. Cambridge University Press, Cambridge Healey R. (1991). Holism and nonseparability. Journal of Philosophy, 88: 393–421 Heisenberg W. (1958). Physics and philosophy: The revolution in modern science. Harper and Brothers, New York Heisenberg W. (1976). The nature of elementary particles. Physics Today, 29: 32–39 Higgs P. (1997). Spontaneous breaking of symmetry. In: Hoddeson, L. et al. (eds) The rise of the standard model, pp. Cambridge University Press, Cambridge Hughes R. (1989). The structure and interpretation of quantum mechanics. Harvard University Press, Cambridge Kochen S. (1985). A new interpretation of quantum mechanics. In: Lahti, P. and Mittelstaedt, P. (eds) Symposium on the foundations of modern physics, pp 1–20. World Scientific Publishing Co., Teaneck, N. J Kuhlmann M., Lyre H. and Wayne A. (2002). Ontological aspects of quantum field theory. New Jersey, World Scientific Leplin J. (1984). Scientific realism. University of California Press, Berkeley MacKinnon E. (1972). The problem of scientific realism. Appleton Century Crofts, New York MacKinnon E. (1979). Scientific realism: The new debates. Philosophy of Science, 46: 501–532 MacKinnon, E. (forthcoming). Interpreting physics: The classical/quantum divide. MacKinnon, E. (forthcoming). The standard model as a philosophical challenge. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 philosophy of science association meeting. East Lansing, Michigan: Philosophy of Science Association. Maxwell, J. 1954[1891]. A treatise on electricity and magnetism. New York: Dover (Reprint). Mehra J., Milton K. and Schwinger J. (2000). Climbing the mountain: The scientific biography of Julian Schwinger. Oxford University Press, Oxford, New York Messiah A. (1964). Quantum mechanics: Vol. I. Amsterdam, North Holland Milton K. (1996). Julian Schwinger: Source theory and the UCLA years. In: Ng, Y. (eds) Julian Schwinger, the physicist, the teacher and the man, pp. World Scientific, Singapore Ng Y. (1996). Julian Schwinger, the physicist, the teacher and the man. World Scientific, Singapore Pauli W. (1947). Review of Hans Reichenbach’s philosophical foundations of quantum physics. Dialectica, 1: 176–178 Riordan M. (1992). The discovery of quarks. Science, 256: 1287–1293 Ruetsche L. (2002). Interpreting quantum field theory. Philosophy of Science, 69: 348–378 Scerri E. (2000). The failure of reduction and how to resist disunity of the sciences in the context of chemical education. Science and Education, 9: 405–425 Scerri E. and McIntyre L. (1997). The case for the philosophy of chemistry. Synthese, 111: 213–232 Schweber S. (1994). QED and the men who made it. Princeton University Press, Princeton Schwinger J. (1958). Selected papers on quantum electrodynamics. Dover, New York Schwinger, J. (1959). The algebra of microscopic measurement. Proceedings of the National Academy of Sciences of the United States of America, 45, 1542. Schwinger J. (1962a). Gauge invariance and mass. Physical Review, 125: 397–398 Schwinger and J. (1962b). Gauge invariance and mass. II. Physical Review, 128: 2425 Schwinger J. (1964). Field theory of matter. Physical Review, 135: B816–B830 Schwinger J. (1965). Field theory of particles. In: Deser, S. and Ford, K. (eds) Lectures on particles and field theory., pp 145–287. Prentice-Hall Inc., Englewood Cliffs, N. J Schwinger J. (1966). Particles and sources. Physical Review, 152: 1219 Schwinger J. (1967). Sources and electrodynamics. Physical Review, 158: 1391 Schwinger J. (1968a). Sources and magnetic charge. Physical Review, 173: 1536–1540 Schwinger J. (1968b). Sources and gravitons. Physical Review, 173: 1264–1268 Schwinger J. (1969). Particles and sources. Gordon and Breach, New York Schwinger J. (1970a). Particles, sources and fields. Reading, Mass., Addison-Wesley Schwinger J. (1970b). Quantum kinematics and dynamics. W. A. Benjamin, Inc., New York Schwinger J. (1983). Renormalization theory of quantum electrodynamics. In: Brown, L. and Hoddeson, L. (eds) The birth of particle physics., pp. Cambridge University Press, Cambridge Schwinger, J. (1993). The greening of quantum field theory: George and I. hep-ph/9310283. Seibt, J. (2002). Quanta, tropes, or processes: Ontologies for QFT beyond the myth of substance. In M. Kuhlmann, H. Lyre, & A. Wayne (2002). Ontological aspects of quantum field theory, New Jersey: World Scientific. Shimony A. (1993). Search for a naturalistic world view: Volume I. Cambridge University Press, New York Smolin, J. (2003). Can quantum cryptography imply quantum mechanics. arXiv:quant-ph/0310067. Strawson P. (1959). Individuals: An essay in descriptive metaphysics. Methuen, London Suppe F. (1974). The search for philosophic understanding of scientific theories. In: Suppe, F. (eds) The structure of scientific theories, pp 3–241. University of Illinois Press, Urbana Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969–1998. In D. Howard (Ed.), PSA1998: Part II, S116–S127. East Lansing, Michigan: Philosophy of Science Association. Teller P. (2004). How we dapple the world. Philosophy of Science, 71: 425–447 Thompson S. (1910). The life of William Thomson, Baron Kelvin of Largs. Macmillan, London Fraassen B. (1991). Quantum mechanics: An empiricist view. Clarendon Press, Oxford Vermaas P. and Dieks D. (1995). The modal interpretation of quantum mechanics and its generalization to density. Foundations of Physics, 25: 145–157 Vermaas P. (1996). Unique transition probabilities in the modal interpretation. Studies in the History and Philosophy of Modern Physics, 27B: 133–159 Wallace, D. (2001). In defence of naiveté: The conceptual status of Lagrangian quantum field theory. arXiv.org/abs/quant-ph/0112148. Weinberg S. (1995). The quantum theory of fields. Vol. I : Foundations. Cambridge University Press, Cambridge Weinberg S. (2001). Can science explain everything? anything?. New York Review of Books, 48: 47–50 Whitehead A. (1929). Process and reality: An essay in cosmology. Macmillan, New York Wilczek, F. (1998). Quantum field theory. arXiv:hep-th/9803075.