Tâm Thần Phân Liệt Trong Thời Đại Di Truyền: Tổng Quan Về Lịch Sử Phát Triển, Đặc Điểm Lâm Sàng Và Các Tiếp Cận Nghiên Cứu Genom Để Hiểu Rõ Về Các Gen Dễ Bị Tổn Thương

Ye Lv1, Lin Wen1, Wen-Juan Hu1, Chong Deng2, Hui-Wen Ren1, Ya-Nan Bao1, Bo-Wei Su1, Ping Gao1, Zi-Yue Man1, Yi-Yang Luo1, Cheng-Jie Li1, Zhi-Xin Xiang1, Bing Wang3, Zhi-Lin Luan1
1Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
2Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
3Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, China

Tóm tắt

Tâm thần phân liệt là một rối loạn tâm thần thần kinh nghiêm trọng ảnh hưởng đến 1% dân số thế giới và xếp hạng là một trong những rối loạn gây gánh nặng nặng nề nhất cho xã hội. Nguyên nhân gây ra tâm thần phân liệt vẫn chưa rõ ràng, liên quan đến nhiều yếu tố nguy cơ như di truyền, môi trường, dinh dưỡng và yếu tố phát triển. Các tương tác phức tạp giữa các yếu tố di truyền và môi trường đã được chỉ ra là có liên quan đến nguyên nhân gây ra tâm thần phân liệt. Bài tổng quan này cung cấp cái nhìn tổng quát về nguồn gốc lịch sử, cơ chế bệnh sinh, chẩn đoán, triệu chứng lâm sàng và phương pháp điều trị tương ứng của tâm thần phân liệt. Thêm vào đó, vì tâm thần phân liệt là một rối loạn di truyền đa gen do sự tương tác kết hợp của nhiều gen vi hiệu ứng, chúng tôi sẽ đi sâu vào một số phương pháp, chẳng hạn như nghiên cứu liên kết gen ứng cử viên (CGAS) và nghiên cứu liên kết toàn bộ bộ gen (GWAS), thường được sử dụng trong các nghiên cứu về di truyền học tâm thần phân liệt. Một số GWAS về tâm thần phân liệt đã được thực hiện với hy vọng xác định các yếu tố di truyền nguy cơ mới, nhất quán và có ảnh hưởng. Cuối cùng, một số gen dễ bị tổn thương trong tâm thần phân liệt đã được xác định và báo cáo trong những năm gần đây, và chức năng sinh học của chúng cũng được liệt kê. Bài tổng quan này có thể phục vụ như một tóm tắt về nghiên cứu trước đó về di truyền học tâm thần phân liệt và các gen dễ bị tổn thương (NRG1, DISC1, RELN, BDNF, MSI2), điều này có thể chỉ ra hướng đi cho các nghiên cứu di truyền học tâm thần phân liệt trong tương lai. Ngoài ra, tùy thuộc vào phát hiện các gen dễ bị tổn thương và chức năng chính xác của chúng, việc phát triển và ứng dụng thuốc chống loạn thần sẽ được thúc đẩy trong tương lai.

Từ khóa

#tâm thần phân liệt #di truyền học #gen dễ bị tổn thương #nghiên cứu liên kết gen #nghiên cứu toàn bộ bộ gen

Tài liệu tham khảo

Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2):523–569. https://doi.org/10.1152/physrev.00055.2003

Ahmad FJ, He Y, Myers KA et al (2006) Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7(5):524–537. https://doi.org/10.1111/j.1600-0854.2006.00403.x

Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834. https://doi.org/10.1038/ng.171

Angelucci F, Gruber SH, El Khoury A et al (2007) Chronic amphetamine treatment reduces NGF and BDNF in the rat brain. Eur Neuropsychopharmacol 17(12):756–762. https://doi.org/10.1016/j.euroneuro.2007.03.002

Anttila S, Illi A, Kampman O et al (2005) Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm 112(7):885–890. https://doi.org/10.1007/s00702-004-0233-9

Arioka Y, Hirata A, Kushima I et al (2020) Characterization of a schizophrenia patient with a rare RELN deletion by combining genomic and patient-derived cell analyses. Schizophr Res 216:511–515. https://doi.org/10.1016/j.schres.2019.10.038

Arnold SE, Talbot K, Hahn CG (2005) Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 147:319–345. https://doi.org/10.1016/S0079-6123(04)47023-X

Austin CP, Ma L, Ky B et al (2003) DISC1 (disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. NeuroReport 14(7):951–954. https://doi.org/10.1097/01.wnr.0000074342.81633.63

Austin CP, Ky B, Ma L et al (2004) Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 124(1):3–10. https://doi.org/10.1016/j.neuroscience.2003.11.010

Bai W, Fu Y, Yu X et al (2019) Association between RELN polymorphisms and schizophrenia in a Han population from Northeast China. Psychiatr Genet 29(6):232–236. https://doi.org/10.1097/YPG.0000000000000235

Bai W, Niu Y, Yu X et al (2020) Decreased serum levels of reelin in patients with schizophrenia. Asian J Psychiatr 49:101995. https://doi.org/10.1016/j.ajp.2020.101995

Beaudet AL, Belmont JW (2008) Array-based DNA diagnostics: let the revolution begin. Annu Rev Med 59:113–129. https://doi.org/10.1146/annurev.med.59.012907.101800

Bebek G, Yang J (2007) PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8:335. https://doi.org/10.1186/1471-2105-8-335

Bergen SE, Petryshen TL (2012) Genome-wide association studies of schizophrenia: does bigger lead to better results? Curr Opin Psychiatry 25(2):76–82. https://doi.org/10.1097/YCO.0b013e32835035dd

Bernstein HG, Dobrowolny H, Keilhoff G et al (2018) Reduced density of DISC1 expressing astrocytes in the Dentate Gyrus but not in the Subventricular Zone in Schizophrenia. Neuropsychopharmacology 43(3):457–458. https://doi.org/10.1038/npp.2017.242

Bersani G, Iannitelli A, Massoni E et al (2004) Ultradian variation of nerve growth factor plasma levels in healthy and schizophrenic subjects. Int J ImmunoPathol Pharmacol 17(3):367–372. https://doi.org/10.1177/039463200401700316

Biedermann F, Fleischhacker WW (2016) Psychotic disorders in DSM-5 and ICD-11. CNS Spectr 21(4):349–354. https://doi.org/10.1017/S1092852916000316

Blackwood DH, Muir WJ (2004) Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res 6(1):35–41. https://doi.org/10.1007/BF03033294

Bleuler E (2010) [Dementia praecox or the group of schizophrenias]. Vertex 21(93):394–400

Bleuler M, Bleuler R (1986) Dementia praecox oder die Gruppe der Schizophrenien: Eugen Bleuler. Br J Psychiatry 149:661–662. https://doi.org/10.1192/bjp.149.5.661

Bolat Kaya O, Kaya H, Civan Kahve A et al (2022) Association of BDNF gene Val66Met polymorphism with suicide attempts, focused attention and response inhibition in patients with Schizophrenia. Noro Psikiyatr Ars 59(2):91–97. https://doi.org/10.29399/npa.27647

Bomprezzi R, Kovanen PE, Martin R (2003) New approaches to investigating heterogeneity in complex traits. J Med Genet 40(8):553–559. https://doi.org/10.1136/jmg.40.8.553

Bousman CA, Cropley V, Klauser P et al (2018) Neuregulin-1 (NRG1) polymorphisms linked with psychosis transition are associated with enlarged lateral ventricles and white matter disruption in schizophrenia. Psychol Med 48(5):801–809. https://doi.org/10.1017/S0033291717002173

Boutros NN, Mucci A, Diwadkar V et al (2014) Negative symptoms in schizophrenia. Clin Schizophr Relat Psychoses 8(1):28–35. https://doi.org/10.3371/CSRP.BOMU.012513

Boyd A, Aragon IV, Abou Saleh L et al (2021) The cAMP-phosphodiesterase 4 (PDE4) controls beta-adrenoceptor- and CFTR-dependent saliva secretion in mice. Biochem J 478(10):1891–1906. https://doi.org/10.1042/BCJ20210212

Boyer P, Phillips JL, Rousseau FL et al (2007) Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev 54(1):92–112. https://doi.org/10.1016/j.brainresrev.2006.12.008

Braem MG, Schouten LJ, Peeters PH et al (2011) Genetic susceptibility to sporadic ovarian cancer: a systematic review. Biochim Biophys Acta 1816(2):132–146. https://doi.org/10.1016/j.bbcan.2011.05.002

Buck SA, Quincy Erickson-Oberg M, Logan RW et al (2022) Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 27(9):3583–3591. https://doi.org/10.1038/s41380-022-01649-w

Burdick KE, DeRosse P, Kane JM et al (2010) Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry 167(4):436–443. https://doi.org/10.1176/appi.ajp.2009.09050615

Burke DF, Worth CL, Priego EM et al (2007) Genome bioinformatic analysis of nonsynonymous SNPs. BMC Bioinformatics 8:301. https://doi.org/10.1186/1471-2105-8-301

Callicott JH, Straub RE, Pezawas L et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 102(24):8627–8632. https://doi.org/10.1073/pnas.0500515102

Cannon TD, Hennah W, van Erp TG et al (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62(11):1205–1213. https://doi.org/10.1001/archpsyc.62.11.1205

Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars mx and functional genomics. Am J Med Genet 97(1):12–17

Cardno AG, Holmans PA, Rees MI et al (2001) A genomewide linkage study of age at onset in schizophrenia. Am J Med Genet 105(5):439–445. https://doi.org/10.1002/ajmg.1404

Carvalho B, Bengtsson H, Speed TP et al (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 8(2):485–499. https://doi.org/10.1093/biostatistics/kxl042

Cassella SN, Hemmerle AM, Lundgren KH et al (2016) Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring. Schizophr Res 171(1–3):195–199. https://doi.org/10.1016/j.schres.2016.01.041

Chang JP, Huang KH, Lin CH et al (2020) Genetic Effects of DISC1 and G72 (DAOA) on visual learning of patients with Schizophrenia. Neuropsychiatr Dis Treat 16:771–780. https://doi.org/10.2147/NDT.S235675

Cheah SY, Lawford BR, Young RM et al (2017) mRNA expression and DNA methylation analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic brain. Genes (Basel) 8(1). https://doi.org/10.3390/genes8010014

Chen J, Cao F, Liu L et al (2015) Genetic studies of schizophrenia: an update. Neurosci Bull 31(1):87–98. https://doi.org/10.1007/s12264-014-1494-4

Chen L, Zhu L, Xu J et al (2022a) Disrupted in Schizophrenia 1 regulates ectopic neurogenesis in the mouse Hilus after Pilocarpine-induced Status Epilepticus. Neuroscience 494:69–81. https://doi.org/10.1016/j.neuroscience.2022.05.009

Chen YM, Lin CH, Lane HY (2022b) Distinctively lower DISC1 mRNA levels in patients with schizophrenia, especially in those with higher positive, negative, and depressive symptoms. Pharmacol Biochem Behav 213:173335. https://doi.org/10.1016/j.pbb.2022.173335

Cho Y, Ryu S, Huh I et al (2015) Effects of genetic variations in NRG1 on cognitive domains in patients with schizophrenia and healthy individuals. Psychiatr Genet 25(4):147–154. https://doi.org/10.1097/YPG.0000000000000087

Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55(1):41–53. https://doi.org/10.1016/S0278-2626(03)00284-7

Cragle CE, MacNicol MC, Byrum SD et al (2019) Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. J Biol Chem 294(28):10969–10986. https://doi.org/10.1074/jbc.RA119.007220

Curley AA, Eggan SM, Lazarus MS et al (2013) Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia. Neurobiol Dis 50:179–186. https://doi.org/10.1016/j.nbd.2012.10.018

D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8(1):81–90. https://doi.org/10.1016/j.yebenh.2005.09.005

Dean B (2001) A predicted cortical serotonergic/cholinergic/GABAergic interface as a site of pathology in schizophrenia. Clin Exp Pharmacol Physiol 28(1–2):74–78. https://doi.org/10.1046/j.1440-1681.2001.03401.x

DeRosse P, Hodgkinson CA, Lencz T et al (2007) Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol Psychiatry 61(10):1208–1210. https://doi.org/10.1016/j.biopsych.2006.07.023

Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60(3):155–166. https://doi.org/10.1006/tpbi.2001.1542

Dietz AG, Goldman SA, Nedergaard M (2020) Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 7(3):272–281. https://doi.org/10.1016/S2215-0366(19)30302-5

Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73:172–180. https://doi.org/10.1016/j.neuint.2013.12.008

Dong E, Agis-Balboa RC, Simonini MV et al (2005) Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci U S A 102(35):12578–12583. https://doi.org/10.1073/pnas.0505394102

Dong J, Chen W, Liu N et al (2022) NRG1 knockdown rescues PV interneuron GABAergic maturation deficits and schizophrenia behaviors in fetal growth restriction mice. Cell Death Discov 8(1):476. https://doi.org/10.1038/s41420-022-01271-3

Du Y, Xie J, Chang W et al (2012) Genome-wide association studies: inherent limitations and future challenges. Front Med 6(4):444–450. https://doi.org/10.1007/s11684-012-0225-3

Duan X, Chang JH, Ge S et al (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158. https://doi.org/10.1016/j.cell.2007.07.010

Duan J, Sanders AR, Gejman PV (2010) Genome-wide approaches to schizophrenia. Brain Res Bull 83(3–4):93–102. https://doi.org/10.1016/j.brainresbull.2010.04.009

Egerton A, Modinos G, Ferrera D et al (2017) Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 7(6):e1147. https://doi.org/10.1038/tp.2017.124

Egerton A, Grace AA, Stone J et al (2020) Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophr Res 223:59–70. https://doi.org/10.1016/j.schres.2020.09.013

Facal F, Costas J (2019) Evidence of association of the DISC1 interactome gene set with schizophrenia from GWAS. Prog Neuropsychopharmacol Biol Psychiatry 95:109729. https://doi.org/10.1016/j.pnpbp.2019.109729

Faraone SV, Larsson H (2019) Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 24(4):562–575. https://doi.org/10.1038/s41380-018-0070-0

Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35(3):528–548. https://doi.org/10.1093/schbul/sbn187

Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5(6):654–663. https://doi.org/10.1038/sj.mp.4000783

Fernandez-Castillo N, Cabana-Dominguez J, Corominas R et al (2022) Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 27(1):624–639. https://doi.org/10.1038/s41380-021-01256-1

Fomsgaard L, Moreno JL, de la Fuente Revenga M et al (2018) Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the roman Low- (RLA-I) and High- (RHA-I) avoidance rat strains. Mol Neurobiol 55(3):1998–2012. https://doi.org/10.1007/s12035-017-0457-y

Freedman R (2003) Schizophrenia N Engl J Med 349(18):1738–1749. https://doi.org/10.1056/NEJMra035458

Fu X, Wang J, Du J et al (2020) BDNF gene’s role in Schizophrenia: from risk allele to methylation implications. Front Psychiatry 11:564277. https://doi.org/10.3389/fpsyt.2020.564277

Gaebel W, Zielasek J, Cleveland HR (2013) Psychotic disorders in ICD-11. Asian J Psychiatr 6(3):263–265. https://doi.org/10.1016/j.ajp.2013.04.002

Gauthier MK, Kosciuczyk K, Tapley L et al (2013) Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur J Neurosci 38(5):2693–2715. https://doi.org/10.1111/ejn.12268

Genomes Project C, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632

George RA, Liu JY, Feng LL et al (2006) Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res 34(19):e130. https://doi.org/10.1093/nar/gkl707

Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349(6255):1489–1494. https://doi.org/10.1126/science.aaa8954

Ghashghaei HT, Weber J, Pevny L et al (2006) The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A 103(6):1930–1935. https://doi.org/10.1073/pnas.0510410103

Glikmann-Johnston Y, Saling MM, Reutens DC et al (2015) Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 6:289. https://doi.org/10.3389/fphar.2015.00289

Goldberg A, Curtis CL, Kleim JA (2015) Linking genes to neurological clinical practice: the genomic basis for neurorehabilitation. J Neurol Phys Ther 39(1):52–61. https://doi.org/10.1097/NPT.0000000000000066

Gorlov IP, Gorlova OY, Sunyaev SR et al (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82(1):100–112. https://doi.org/10.1016/j.ajhg.2007.09.006

Gou N, Liu Z, Palaniyappan L et al (2018) Effects of DISC1 polymorphisms on resting-state spontaneous neuronal activity in the early-stage of Schizophrenia. Front Psychiatry 9:137. https://doi.org/10.3389/fpsyt.2018.00137

Grayson DR, Jia XM, Chen Y et al (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102(26):9341–9346. https://doi.org/10.1073/pnas.0503736102

Grozdanov V, Bliederhaeuser C, Ruf WP et al (2014) Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol 128(5):651–663. https://doi.org/10.1007/s00401-014-1345-4

Guidotti A, Auta J, Davis JM et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57(11):1061–1069. https://doi.org/10.1001/archpsyc.57.11.1061

Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98(8):4746–4751. https://doi.org/10.1073/pnas.081071198

Hamshere ML, Bennett P, Williams N et al (2005) Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 62(10):1081–1088. https://doi.org/10.1001/archpsyc.62.10.1081

Han M, Deng C (2020) BDNF as a pharmacogenetic target for antipsychotic treatment of schizophrenia. Neurosci Lett 726:133870. https://doi.org/10.1016/j.neulet.2018.10.015

Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68. https://doi.org/10.1038/sj.mp.4001558. (image 45)

Harrow M, Jobe TH, Faull RN (2012) Do all schizophrenia patients need antipsychotic treatment continuously throughout their lifetime? A 20-year longitudinal study. Psychol Med 42(10):2145–2155. https://doi.org/10.1017/S0033291712000220

Hawi Z, Straub RE, O’Neill A et al (1998) No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in irish families. Psychiatry Res 81(2):111–116. https://doi.org/10.1016/s0165-1781(98)00076-6

He BS, Zhang LY, Pan YQ et al (2016) Association of the DISC1 and NRG1 genetic polymorphisms with schizophrenia in a chinese population. Gene 590(2):293–297. https://doi.org/10.1016/j.gene.2016.05.035

Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. https://doi.org/10.1073/pnas.0903103106

Hiser J, Koenigs M (2018) The multifaceted role of the Ventromedial Prefrontal cortex in emotion, decision making, Social Cognition, and psychopathology. Biol Psychiatry 83(8):638–647. https://doi.org/10.1016/j.biopsych.2017.10.030

Hodgkinson CA, Goldman D, Jaeger J et al (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75(5):862–872. https://doi.org/10.1086/425586

Hofmann LA, Lau S, Kirchebner J (2022) Maintaining social capital in offenders with schizophrenia spectrum disorder-An explorative analysis of influential factors. Front Psychiatry 13:945732. https://doi.org/10.3389/fpsyt.2022.945732

Hu G, Yang C, Zhao L et al (2018) The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 81:187–193. https://doi.org/10.1016/j.pnpbp.2017.10.017

Huang E, Hettige NC, Zai G et al (2019) BDNF Val66Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizoaffective disorder patients: a meta-analysis. Pharmacogenomics J 19(3):269–276. https://doi.org/10.1038/s41397-018-0041-5

Hwu HG, Liu CM, Fann CS et al (2003) Linkage of schizophrenia with chromosome 1q loci in taiwanese families. Mol Psychiatry 8(4):445–452. https://doi.org/10.1038/sj.mp.4001235

Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193. https://doi.org/10.1038/nature09552

International Schizophrenia C, Purcell SM, Wray NR et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. https://doi.org/10.1038/nature08185

Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jphs.2020.07.011

Jablensky A (2000) Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 250(6):274–285. https://doi.org/10.1007/s004060070002

Jablensky A (2006) Subtyping schizophrenia: implications for genetic research. Mol Psychiatry 11(9):815–836. https://doi.org/10.1038/sj.mp.4001857

Jablensky A, Sartorius N, Ernberg G et al (1992) Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr Suppl 20:1–97. https://doi.org/10.1017/s0264180100000904

Jorgensen TJ, Ruczinski I, Kessing B et al (2009) Hypothesis-driven candidate gene association studies: practical design and analytical considerations. Am J Epidemiol 170(8):986–993. https://doi.org/10.1093/aje/kwp242

Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28(1):5–11. https://doi.org/10.1016/j.tins.2004.11.003

Kamiya A, Kubo K, Tomoda T et al (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7(12):1167–1178. https://doi.org/10.1038/ncb1328

Kamiya A, Tomoda T, Chang J et al (2006) DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 15(22):3313–3323. https://doi.org/10.1093/hmg/ddl407

Kavvoura FK, McQueen MB, Khoury MJ et al (2008) Evaluation of the potential excess of statistically significant findings in published genetic association studies: application to Alzheimer’s disease. Am J Epidemiol 168(8):855–865. https://doi.org/10.1093/aje/kwn206

Kelley ME, White L, Compton MT et al (2013) Subscale structure for the positive and negative syndrome scale (PANSS): a proposed solution focused on clinical validity. Psychiatry Res 205(1–2):137–142. https://doi.org/10.1016/j.psychres.2012.08.019

Khandaker GM, Cousins L, Deakin J et al (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/S2215-0366(14)00122-9

Kim HJ, Park HJ, Jung KH et al (2008) Association study of polymorphisms between DISC1 and schizophrenia in a korean population. Neurosci Lett 430(1):60–63. https://doi.org/10.1016/j.neulet.2007.10.010

Kim Y, Zerwas S, Trace SE et al (2011) Schizophrenia genetics: where next? Schizophr Bull 37(3):456–463. https://doi.org/10.1093/schbul/sbr031

Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and Association with neurological Diseases. Cell Mol Neurobiol 39(1):31–59. https://doi.org/10.1007/s10571-018-0632-3

Knable MB, Barci BM, Webster MJ et al (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(6):609–620. https://doi.org/10.1038/sj.mp.4001471

Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179. https://doi.org/10.1016/s0163-7258(02)00328-5

Kremen WS, Seidman LJ, Faraone SV et al (2004) Heterogeneity of schizophrenia: a study of individual neuropsychological profiles. Schizophr Res 71(2–3):307–321. https://doi.org/10.1016/j.schres.2004.02.022

Krogmann A, Peters L, von Hardenberg L et al (2019) Keeping up with the therapeutic advances in schizophrenia: a review of novel and emerging pharmacological entities. CNS Spectr 24(S1):38–69. https://doi.org/10.1017/S109285291900124X

Kuhn S, Gallinat J (2013) Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophr Bull 39(2):358–365. https://doi.org/10.1093/schbul/sbr151

Kumar PK, Mitra P, Ghosh R et al (2020) Association of circulating BDNF levels with BDNF rs6265 polymorphism in schizophrenia. Behav Brain Res 394:112832. https://doi.org/10.1016/j.bbr.2020.112832

Kwon JM, Goate AM (2000) The candidate gene approach. Alcohol Res Health 24(3):164–168

Lai CY, Scarr E, Udawela M et al (2016) Biomarkers in schizophrenia: a focus on blood based diagnostics and theranostics. World J Psychiatry 6(1):102–117. https://doi.org/10.5498/wjp.v6.i1.102

Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247. https://doi.org/10.1038/ng1195-241

Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

Lappalainen T, Scott AJ, Brandt M et al (2019) Genomic analysis in the age of human genome sequencing. Cell 177(1):70–84. https://doi.org/10.1016/j.cell.2019.02.032

Laruelle M, Abi-Dargham A, van Dyck CH et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240. https://doi.org/10.1073/pnas.93.17.9235

Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. https://doi.org/10.1007/s00424-010-0809-1

Legge SE, Santoro ML, Periyasamy S et al (2021) Genetic architecture of schizophrenia: a review of major advancements. Psychol Med 51(13):2168–2177. https://doi.org/10.1017/S0033291720005334

Leiser SC, Li Y, Pehrson AL et al (2015) Serotonergic regulation of prefrontal cortical circuitries involved in Cognitive Processing: a review of individual 5-HT receptor mechanisms and concerted Effects of 5-HT receptors exemplified by the Multimodal antidepressant vortioxetine. ACS Chem Neurosci 6(7):970–986. https://doi.org/10.1021/cn500340j

Lesnick TG, Papapetropoulos S, Mash DC et al (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98. https://doi.org/10.1371/journal.pgen.0030098

Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334. https://doi.org/10.1016/s0896-6273(00)00111-2

Li Q, Powell N, Zhang H et al (2011a) Endothelial IL-1R1 is a critical mediator of EAE pathogenesis. Brain Behav Immun 25(1):160–167. https://doi.org/10.1016/j.bbi.2010.09.009

Li W, Song X, Zhang H et al (2011b) Association study of RELN polymorphisms with schizophrenia in Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1505–1511. https://doi.org/10.1016/j.pnpbp.2011.04.007

Li W, Zhou N, Yu Q et al (2013) Association of BDNF gene polymorphisms with schizophrenia and clinical symptoms in a chinese population. Am J Med Genet B Neuropsychiatr Genet 162B(6):538–545. https://doi.org/10.1002/ajmg.b.32183

Lieberman JA, First MB (2018) Psychotic disorders. N Engl J Med 379(3):270–280. https://doi.org/10.1056/NEJMra1801490

Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91(4):415–433. https://doi.org/10.1007/BF00216006

Lin SH, Lee LT, Yang YK (2014) Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 12(3):196–202. https://doi.org/10.9758/cpn.2014.12.3.196

Liu W, Zhao W, Chase GA (2006) The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests. Hum Hered 61(1):31–44. https://doi.org/10.1159/000092141

Liu W, Yang T, Zhao W et al (2007) Accounting for genotyping errors in tagging SNP selection. Ann Hum Genet 71(Pt 4):467–479. https://doi.org/10.1111/j.1469-1809.2007.00354.x

Liu L, Jia F, Yuan G et al (2010a) Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 176(1):1–7. https://doi.org/10.1016/j.psychres.2008.10.024

Liu Y, Chen PL, McGrath J et al (2010b) Replication of an association of a common variant in the reelin gene (RELN) with schizophrenia in Ashkenazi jewish women. Psychiatr Genet 20(4):184–186. https://doi.org/10.1097/YPG.0b013e32833a220b

Liu J, Wang P, Sun L et al (2021) The association between BDNF levels and risperidone-induced weight gain is dependent on the BDNF Val66Met polymorphism in antipsychotic-naive first episode schizophrenia patients: a 12-week prospective study. Transl Psychiatry 11(1):458. https://doi.org/10.1038/s41398-021-01585-3

Loh HC, Tang PY, Tee SF et al (2013) Neuregulin-1 (NRG-1) and its susceptibility to schizophrenia: a case-control study and meta-analysis. Psychiatry Res 208(2):186–188. https://doi.org/10.1016/j.psychres.2013.01.022

Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432

Loy JH, Merry SN, Hetrick SE et al (2017) Atypical antipsychotics for disruptive behaviour disorders in children and youths. Cochrane Database Syst Rev 8(8):CD008559. https://doi.org/10.1002/14651858.CD008559.pub3

Luan Z (2017) Susceptibility genes for schizophrenia and their functional relationships. [Thesis fully internal (DIV), University of Groningen]. Rijksuniversiteit Groningen

Luan Z, Lu T, Ruan Y et al (2016) The human MSI2 gene is associated with schizophrenia in the Chinese Han population. Neurosci Bull 32(3):239–245. https://doi.org/10.1007/s12264-016-0026-9

Luan ZL, Cui XH, Xu H et al (2017) Association of MSI2 gene polymorphism with age-at-onset of schizophrenia in a Chinese Population. Neurosci Bull 33(6):731–733. https://doi.org/10.1007/s12264-017-0176-4

Luo X, Jin C, Zhou Z et al (2015) New findings support the association of DISC1 genetic variants with susceptibility to schizophrenia in the Han Chinese population. Psychiatry Res 228(3):966–968. https://doi.org/10.1016/j.psychres.2015.05.115

Luo X, Jin C, Zhou Z et al (2016) Association study of DISC1 genetic variants with the risk of schizophrenia. Psychiatr Genet 26(3):132–135. https://doi.org/10.1097/YPG.0000000000000123

Luo X, Chen S, Xue L et al (2019) SNP variation of RELN gene and schizophrenia in a Chinese population: a hospital-based case-control study. Front Genet 10:175. https://doi.org/10.3389/fgene.2019.00175

Ma JH, Sun XY, Guo TJ et al (2018) Association on DISC1 SNPs with schizophrenia risk: a meta-analysis. Psychiatry Res 270:306–309. https://doi.org/10.1016/j.psychres.2018.09.056

Magi S, Piccirillo S, Amoroso S et al (2019) Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225674

Maksymetz J, Moran SP, Conn PJ (2017) Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 10(1):15. https://doi.org/10.1186/s13041-017-0293-z

Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605. https://doi.org/10.1172/JCI34772

Maroney M (2020) An update on current treatment strategies and emerging agents for the management of schizophrenia. Am J Manag Care 26(3 Suppl):S55–S61. https://doi.org/10.37765/ajmc.2020.43012

Martinez-Pinteno A, Mezquida G, Bioque M et al (2022) The role of BDNF and NGF plasma levels in first-episode schizophrenia: a longitudinal study. Eur Neuropsychopharmacol 57:105–117. https://doi.org/10.1016/j.euroneuro.2022.02.003

Marzan S, Aziz MA, Islam MS (2021) Association between REELIN Gene polymorphisms (rs7341475 and rs262355) and risk of Schizophrenia: an updated Meta-analysis. J Mol Neurosci 71(4):675–690. https://doi.org/10.1007/s12031-020-01696-4

McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199. https://doi.org/10.1192/bjp.bp.106.025585

McCutcheon RA, Reis Marques T, Howes OD (2020) Schizophrenia-An overview. JAMA Psychiat 77(2):201–210. https://doi.org/10.1001/jamapsychiatry.2019.3360

McGrath J, Saha S, Welham J et al (2004) A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 2:13. https://doi.org/10.1186/1741-7015-2-13

Meneses A (2015) Serotonin, neural markers, and memory. Front Pharmacol 6:143. https://doi.org/10.3389/fphar.2015.00143

Millar JK, Wilson-Annan JC, Anderson S et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423. https://doi.org/10.1093/hmg/9.9.1415

Millar JK, Christie S, Anderson S et al (2001) Genomic structure and localisation within a linkage hotspot of disrupted in Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 6(2):173–178. https://doi.org/10.1038/sj.mp.4000784

Millar JK, Mackie S, Clapcote SJ et al (2007) Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol 584(Pt 2):401–405. https://doi.org/10.1113/jphysiol.2007.140210

Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. https://doi.org/10.1038/nri.2015.5

Mitchell KJ, Porteous DJ (2011) Rethinking the genetic architecture of schizophrenia. Psychol Med 41(1):19–32. https://doi.org/10.1017/S003329171000070X

Mohamed ZI, Tee SF, Tang PY (2018) Association of functional polymorphisms in 3’-untranslated regions of COMT, DISC1, and DTNBP1 with schizophrenia: a meta-analysis. Psychiatr Genet 28(6):110–119. https://doi.org/10.1097/YPG.0000000000000210

Moises HW, Yang L, Kristbjarnarson H et al (1995) An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 11(3):321–324. https://doi.org/10.1038/ng1195-321

Mora G (1966) The history of psychiatry: a cultural and bibliographical survey. Int J Psychiatry 2(3):335–366

Mostaid MS, Lee TT, Chana G et al (2017) Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients. Transl Psychiatry 7(12):1280. https://doi.org/10.1038/s41398-017-0041-2

Munafo MR, Attwood AS, Flint J (2008) Neuregulin 1 genotype and schizophrenia. Schizophr Bull 34(1):9–12. https://doi.org/10.1093/schbul/sbm129

Murray RM, Bhavsar V, Tripoli G et al (2017) 30 years on: how the neurodevelopmental hypothesis of Schizophrenia Morphed into the developmental risk factor model of psychosis. Schizophr Bull 43(6):1190–1196. https://doi.org/10.1093/schbul/sbx121

Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR et al (2017) Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res 88:28–37. https://doi.org/10.1016/j.jpsychires.2016.12.020

Nakazawa K, Sapkota K (2020) The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 205:107426. https://doi.org/10.1016/j.pharmthera.2019.107426

Nawwar DA, Zaki HF, Sayed RH (2022) Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 30(5):1891–1907. https://doi.org/10.1007/s10787-022-01031-w

Nicholls HL, John CR, Watson DS et al (2020) Reaching the end-game for GWAS: machine learning approaches for the prioritization of complex disease loci. Front Genet 11:350. https://doi.org/10.3389/fgene.2020.00350

Nicodemus KK, Luna A, Vakkalanka R et al (2006) Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol Psychiatry 11(12):1062–1065. https://doi.org/10.1038/sj.mp.4001878

Nie F, Zhang Q, Ma J et al (2021) Schizophrenia risk candidate EGR3 is a novel transcriptional regulator of RELN and regulates neurite outgrowth via the Reelin signal pathway in vitro. J Neurochem 157(6):1745–1758. https://doi.org/10.1111/jnc.15225

Nieto RR, Carrasco A, Corral S et al (2021) BDNF as a biomarker of cognition in schizophrenia/psychosis: an updated review. Front Psychiatry 12:662407. https://doi.org/10.3389/fpsyt.2021.662407

Nishibe M, Toyoda H, Hiraga SI et al (2022) Synaptic and genetic bases of impaired motor learning associated with modified experience-dependent cortical plasticity in heterozygous reeler mutants. Cereb Cortex 32(3):504–519. https://doi.org/10.1093/cercor/bhab227

Nuechterlein KH, Barch DM, Gold JM et al (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39. https://doi.org/10.1016/j.schres.2004.09.007

O’Tuathaigh CM, Fumagalli F, Desbonnet L et al (2017) Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors neuregulin-1 x DISC1. Schizophr Bull 43(1):214–225. https://doi.org/10.1093/schbul/sbw120

Okano H, Kawahara H, Toriya M et al (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–356. https://doi.org/10.1016/j.yexcr.2005.02.021

Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18. https://doi.org/10.1016/j.ejphar.2014.10.031

Orhan F, Fatouros-Bergman H, Goiny M et al (2018) CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol Psychiatry 23(5):1244–1250. https://doi.org/10.1038/mp.2017.25

Orzelska-Gorka J, Mikulska J, Wiszniewska A et al (2022) New atypical antipsychotics in the treatment of schizophrenia and depression. Int J Mol Sci 23(18). https://doi.org/10.3390/ijms231810624

Owen MJ (2000) Molecular genetic studies of schizophrenia. Brain Res Brain Res Rev 31(2–3):179–186. https://doi.org/10.1016/s0165-0173(99)00035-1

Owen MJ, Craddock N, O’Donovan MC (2010) Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry 67(7):667–673. https://doi.org/10.1001/archgenpsychiatry.2010.69

Oya K, Kishi T, Iwata N (2014) Efficacy and tolerability of minocycline augmentation therapy in schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Hum Psychopharmacol 29(5):483–491. https://doi.org/10.1002/hup.2426

Pan L, Cao Z, Chen L et al (2022) Association of BDNF and MMP-9 single-nucleotide polymorphisms with the clinical phenotype of schizophrenia. Front Psychiatry 13:941973. https://doi.org/10.3389/fpsyt.2022.941973

Pape K, Tamouza R, Leboyer M et al (2019) Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328. https://doi.org/10.1038/s41582-019-0174-4

Park SM, Deering RP, Lu Y et al (2014) Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med 211(1):71–87. https://doi.org/10.1084/jem.20130736

Patnala R, Clements J, Batra J (2013) Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 14:39. https://doi.org/10.1186/1471-2156-14-39

Peralta V, Cuesta MJ (2004) The deficit syndrome of the psychotic illness. A clinical and nosological study. Eur Arch Psychiatry Clin Neurosci 254(3):165–171. https://doi.org/10.1007/s00406-004-0464-7

Peters BJ, Rodin AS, de Boer A et al (2010) Methodological and statistical issues in pharmacogenomics. J Pharm Pharmacol 62(2):161–166. https://doi.org/10.1211/jpp.62.02.0002

Pillinger T, Osimo EF, Brugger S et al (2019) A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr Bull 45(5):1120–1133. https://doi.org/10.1093/schbul/sby160

Ping J, Zhang J, Wan J et al (2021) Correlation of four single nucleotide polymorphisms of the RELN gene with schizophrenia. East Asian Arch Psychiatry 31(4):112–118. https://doi.org/10.12809/eaap2168

Ping J, Zhang J, Wan J et al (2022) A polymorphism in the BDNF gene (rs11030101) is associated with negative symptoms in Chinese Han patients with Schizophrenia. Front Genet 13:849227. https://doi.org/10.3389/fgene.2022.849227

Plitman E, Nakajima S, de la Fuente-Sandoval C et al (2014) Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 24(10):1591–1605. https://doi.org/10.1016/j.euroneuro.2014.07.015

Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. https://doi.org/10.1038/ng1847

Psychiatric GCSC (2009) A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 14(1):10–17. https://doi.org/10.1038/mp.2008.126

Puhahn-Schmeiser B, Kleemann T, Jabbarli R et al (2022) Granule cell dispersion in two mouse models of temporal lobe epilepsy and reeler mice is associated with changes in dendritic orientation and spine distribution. Hippocampus 32(7):517–528. https://doi.org/10.1002/hipo.23447

Puig MV, Gener T (2015) Serotonin modulation of prefronto-hippocampal rhythms in health and disease. ACS Chem Neurosci 6(7):1017–1025. https://doi.org/10.1021/cn500350e

Qu M, Tang F, Yue W et al (2007) Positive association of the disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 144B(3):266–270. https://doi.org/10.1002/ajmg.b.30322

Reichenberg A (2005) Cognitive impairment as a risk factor for psychosis. Dialogues Clin Neurosci 7(1):31–38. https://doi.org/10.31887/DCNS.2005.7.1/areichenberg

Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11(5):514–522. https://doi.org/10.1038/sj.mp.4001791

Rimer M, Barrett DW, Maldonado MA et al (2005) Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. NeuroReport 16(3):271–275. https://doi.org/10.1097/00001756-200502280-0001410

Robinson DG, Woerner MG, McMeniman M et al (2004) Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. Am J Psychiatry 161(3):473–479. https://doi.org/10.1176/appi.ajp.161.3.473

Rodriguez-Murillo L, Gogos JA, Karayiorgou M (2012) The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med 63:63–80. https://doi.org/10.1146/annurev-med-072010-091100

Roeder K, Devlin B, Wasserman L (2007) Improving power in genome-wide association studies: weights tip the scale. Genet Epidemiol 31(7):741–747. https://doi.org/10.1002/gepi.20237

Roeder K, Bacanu SA, Wasserman L et al (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78(2):243–252. https://doi.org/10.1086/500026

Rosenblat JD, Cha DS, Mansur RB et al (2014) Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 53:23–34. https://doi.org/10.1016/j.pnpbp.2014.01.013

Rubin RD, Watson PD, Duff MC et al (2014) The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci 8:742. https://doi.org/10.3389/fnhum.2014.00742

Ruzicka WB, Subburaju S, Benes FM (2017) Variability of DNA methylation within schizophrenia risk loci across subregions of human hippocampus. Genes (Basel) 8(5). https://doi.org/10.3390/genes8050143

Sakakibara S, Nakamura Y, Satoh H et al (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21(20):8091–8107. https://doi.org/10.1523/JNEUROSCI.21-20-08091.2001

Sakakibara S, Nakamura Y, Yoshida T et al (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci U S A 99(23):15194–15199. https://doi.org/10.1073/pnas.232087499

Sawahata M, Mori D, Arioka Y et al (2020) Generation and analysis of novel reln-deleted mouse model corresponding to exonic reln deletion in schizophrenia. Psychiatry Clin Neurosci 74(5):318–327. https://doi.org/10.1111/pcn.12993

Schanzer A, Wachs FP, Wilhelm D et al (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14(3):237–248. https://doi.org/10.1111/j.1750-3639.2004.tb00060.x

Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40(1):190–206. https://doi.org/10.1038/npp.2014.95

Schurov IL, Handford EJ, Brandon NJ et al (2004) Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 9(12):1100–1110. https://doi.org/10.1038/sj.mp.4001574

Schweiger JI, Bilek E, Schafer A et al (2019) Effects of BDNF val(66)Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans. Neuropsychopharmacology 44(3):590–597. https://doi.org/10.1038/s41386-018-0248-9

Seyedabadi M, Fakhfouri G, Ramezani V et al (2014) The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp Brain Res 232(3):723–738. https://doi.org/10.1007/s00221-013-3818-4

Shcherbakova IV, Siryachenko TM, Mazaeva NA et al (2004) Leukocyte elastase and autoantibodies to nerve growth factor in the acute phase of schizophrenia and their relationship to symptomatology. World J Biol Psychiatry 5(3):143–148. https://doi.org/10.1080/15622970410029926

Shi J, Levinson DF, Duan J et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–757. https://doi.org/10.1038/nature08192

Shi XJ, Du Y, Lei C et al (2022) Effects of brain-derived neurotrophic factor (BDNF) on the schizophrenia model of animals. J Psychiatr Res 156:538–546. https://doi.org/10.1016/j.jpsychires.2022.10.022

Shiota S, Tochigi M, Shimada H et al (2008) Association and interaction analyses of NRG1 and ERBB4 genes with schizophrenia in a japanese population. J Hum Genet 53(10):929–935. https://doi.org/10.1007/s10038-008-0332-9

Shokouhifar A, Askari N, Yazdani S et al (2019) DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: a preliminary study. J Cell Biochem 120(2):1588–1597. https://doi.org/10.1002/jcb.27427

Shoval G, Weizman A (2005) The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 15(3):319–329. https://doi.org/10.1016/j.euroneuro.2004.12.005

Shriner D, Baye TM, Padilla MA et al (2008) Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies. Nucleic Acids Res 36(4):e26. https://doi.org/10.1093/nar/gkn007

Sieghart W, Fuchs K, Tretter V et al (1999) Structure and subunit composition of GABA(A) receptors. Neurochem Int 34(5):379–385. https://doi.org/10.1016/s0197-0186(99)00045-5

Silberberg G, Darvasi A, Pinkas-Kramarski R et al (2006) The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet 141B(2):142–148. https://doi.org/10.1002/ajmg.b.30275

Singh B (2005) Recognition and optimal management of schizophrenia and related psychoses. Intern Med J 35(7):413–418. https://doi.org/10.1111/j.1445-5994.2005.00856.x

Singh SP, Singh V (2011) Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10):859–885. https://doi.org/10.2165/11586650-000000000-00000

Skibinska M, Groszewska A, Kapelski P et al (2018) Val66Met functional polymorphism and serum protein level of brain-derived neurotrophic factor (BDNF) in acute episode of schizophrenia and depression. Pharmacol Rep 70(1):55–59. https://doi.org/10.1016/j.pharep.2017.08.002

Solmi M, Radua J, Olivola M et al (2022) Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry 27(1):281–295. https://doi.org/10.1038/s41380-021-01161-7

Sozuguzel MD, Sazci A, Yildiz M (2019) Female gender specific association of the Reelin (RELN) gene rs7341475 variant with schizophrenia. Mol Biol Rep 46(3):3411–3416. https://doi.org/10.1007/s11033-019-04803-w

Stahl SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr 23(3):187–191. https://doi.org/10.1017/S1092852918001013

Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892. https://doi.org/10.1086/342734

Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747. https://doi.org/10.1038/nature08186

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445. https://doi.org/10.1073/pnas.1530509100

Stram DO (2004) Tag SNP selection for association studies. Genet Epidemiol 27(4):365–374. https://doi.org/10.1002/gepi.20028

Su X, Qiao L, Liu Q et al (2021) Genetic polymorphisms of BDNF on cognitive functions in drug-naive first episode patients with schizophrenia. Sci Rep 11(1):20057. https://doi.org/10.1038/s41598-021-99510-7

Suchanek-Raif R, Raif P, Kowalczyk M et al (2020) An analysis of five TrkB gene polymorphisms in schizophrenia and the interaction of its haplotype with rs6265 BDNF gene polymorphism. Dis Markers 2020:4789806. https://doi.org/10.1155/2020/4789806

Sugai T, Kawamura M, Iritani S et al (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci 1025:84–91. https://doi.org/10.1196/annals.1316.011

Sun YV, Hu YJ (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet 93:147–190. https://doi.org/10.1016/bs.adgen.2015.11.004

Szczepankiewicz A, Skibinska M, Czerski PM et al (2005) No association of the brain-derived neurotrophic factor (BDNF) gene C-270T polymorphism with schizophrenia. Schizophr Res 76(2–3):187–193. https://doi.org/10.1016/j.schres.2005.02.006

Szeszko PR, Lipsky R, Mentschel C et al (2005) Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry 10(7):631–636. https://doi.org/10.1038/sj.mp.4001656

Takahashi M, Shirakawa O, Toyooka K et al (2000) Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5(3):293–300. https://doi.org/10.1038/sj.mp.4000718

Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20(8):467–484. https://doi.org/10.1038/s41576-019-0127-1

Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “Just the Facts”: what we know in 2008 part 1: overview. Schizophr Res 100(1–3):4–19. https://doi.org/10.1016/j.schres.2008.01.022

Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110(1–3):1–23. https://doi.org/10.1016/j.schres.2009.03.005

Thomson PA, Wray NR, Millar JK et al (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the scottish population. Mol Psychiatry 10(7):657–668. https://doi.org/10.1038/sj.mp.4001669

Tochigi M, Otowa T, Suga M et al (2006) No evidence for an association between the BDNF Val66Met polymorphism and schizophrenia or personality traits. Schizophr Res 87(1–3):45–47. https://doi.org/10.1016/j.schres.2006.06.029

Tremolizzo L, Carboni G, Ruzicka WB et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99(26):17095–17100. https://doi.org/10.1073/pnas.262658999

Tso IF, Fang Y, Phan KL et al (2015) Abnormal GABAergic function and face processing in schizophrenia: a pharmacologic-fMRI study. Schizophr Res 168(1–2):338–344. https://doi.org/10.1016/j.schres.2015.08.022

Uno Y, Coyle JT (2019) Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 73(5):204–215. https://doi.org/10.1111/pcn.12823

Urban N, Abi-Dargham A (2010) Neurochemical imaging in schizophrenia. Curr Top Behav Neurosci 4:215–242. https://doi.org/10.1007/7854_2010_37

van Os J, Kapur S (2009) Schizophrenia Lancet 374(9690):635–645. https://doi.org/10.1016/S0140-6736(09)60995-8

Vilchez-Acosta A, Manso Y, Cardenas A et al (2022) Specific contribution of Reelin expressed by Cajal-Retzius cells or GABAergic interneurons to cortical lamination. Proc Natl Acad Sci U S A 119(37):e2120079119. https://doi.org/10.1073/pnas.2120079119

Wang HY, Liu Y, Yan JW et al (2018) Gene polymorphisms of DISC1 is associated with schizophrenia: evidence from a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 81:64–73. https://doi.org/10.1016/j.pnpbp.2017.10.008

Watson CG, Kucala T, Tilleskjor C et al (1984) Schizophrenic birth seasonality in relation to the incidence of infectious diseases and temperature extremes. Arch Gen Psychiatry 41(1):85–90. https://doi.org/10.1001/archpsyc.1984.01790120089011

Wehr MC, Hinrichs W, Brzozka MM et al (2017) Spironolactone is an antagonist of NRG1-ERBB4 signaling and schizophrenia-relevant endophenotypes in mice. EMBO Mol Med 9(10):1448–1462. https://doi.org/10.15252/emmm.201707691

Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7(10):771–780. https://doi.org/10.1038/nrg1960

Wellcome Trust Case Control C (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678. https://doi.org/10.1038/nature05911

Wen Z, Chen J, Khan RA et al (2016) Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 171B(3):468–478. https://doi.org/10.1002/ajmg.b.32428

Wilkening S, Chen B, Bermejo JL et al (2009) Is there still a need for candidate gene approaches in the era of genome-wide association studies? Genomics 93(5):415–419. https://doi.org/10.1016/j.ygeno.2008.12.011

Witte JS (2010) Genome-wide association studies and beyond. Annu Rev Public Health 31:9–20. https://doi.org/10.1146/annurev.publhealth.012809.103723. (24 p following 20)

Wu Q, Li Y, Xiao B (2013) DISC1-related signaling pathways in adult neurogenesis of the hippocampus. Gene 518(2):223–230. https://doi.org/10.1016/j.gene.2013.01.015

Xu H, Wang J, Zhou Y et al (2021) BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia. Psychoneuroendocrinology 125:105121. https://doi.org/10.1016/j.psyneuen.2020.105121

Yang AC, Tsai SJ (2017) New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 18(8). https://doi.org/10.3390/ijms18081689

Yang J, Kang C, Wu C et al (2021) Pharmacogenetic associations of NRG1 polymorphisms with neurocognitive performance and clinical symptom response to risperidone in the untreated schizophrenia. Schizophr Res 231:67–69. https://doi.org/10.1016/j.schres.2021.03.001

Yin J, Lu Y, Yu S et al (2020) Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas 157(1):43. https://doi.org/10.1186/s41065-020-00158-6

Yoon JH, Maddock RJ, DongBo Cui E et al (2020) Reduced in vivo visual cortex GABA in schizophrenia, a replication in a recent onset sample. Schizophr Res 215:217–222. https://doi.org/10.1016/j.schres.2019.10.025

Yue WH, Wang HF, Sun LD et al (2011) Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43(12):1228–1231. https://doi.org/10.1038/ng.979

Zhang F, Sarginson J, Crombie C et al (2006) Genetic association between schizophrenia and the DISC1 gene in the scottish population. Am J Med Genet B Neuropsychiatr Genet 141B(2):155–159. https://doi.org/10.1002/ajmg.b.30274

Zhang Y, Lu T, Yan H et al (2013) Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS ONE 8(2):e56732. https://doi.org/10.1371/journal.pone.0056732

Zhang XY, Chen da C, Tan YL et al (2016) BDNF polymorphisms are associated with cognitive performance in schizophrenia patients versus healthy controls. J Clin Psychiatry 77(8):e1011-1018. https://doi.org/10.4088/JCP.15m10269

Zheng F, Wang L, Jia M et al (2011) Evidence for association between disrupted-in-Schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study. Behav Brain Funct 7:14. https://doi.org/10.1186/1744-9081-7-14

Zhou J, Zhou D, Yan T et al (2022) Association between CpG island DNA methylation in the promoter region of RELN and positive and negative types of schizophrenia. J Int Med Res 50(5):3000605221100345. https://doi.org/10.1177/03000605221100345