Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lên lịch cho việc định tuyến đa robot với các ràng buộc chặn và kích hoạt
Tóm tắt
Bài báo này xem xét vấn đề phục vụ một tập hợp các địa điểm bởi một đội robot nhằm tối thiểu hóa tổng thời gian hoàn thành. Mặc dù được khơi gợi bởi một ứng dụng thực tế cụ thể liên quan đến nhiều robot trong khoan và cố định, vấn đề này cũng xuất hiện trong một loạt các lĩnh vực đa robot khác trong đó thời gian bắt đầu dịch vụ bị ràng buộc theo trình tự và các robot phải được định tuyến trong không gian và thời gian để tránh va chạm. Chúng tôi chính thức hóa vấn đề tổng quát này và phân tích độ phức tạp của nó. Chúng tôi phát triển một quy trình tìm kiếm cục bộ theo phương pháp heuristic để giải quyết vấn đề và phân tích hiệu suất của nó trên một tập hợp các trường hợp vấn đề được tạo ra một cách tổng hợp, trong đó một số trường hợp phản ánh cấu trúc cụ thể của ứng dụng khoan và cố định, và một số khác tổng quát cho các cài đặt ứng dụng khác. Chúng tôi cung cấp một phân tích vi phân của quy trình tìm kiếm cục bộ của chúng tôi và một so sánh với các phương pháp khác để chứng minh hiệu quả của phương pháp heuristic được đề xuất.
Từ khóa
#lập lịch #robot đa năng #tối thiểu hóa thời gian hoàn thành #ràng buộc chặn #ràng buộc kích hoạtTài liệu tham khảo
Araki T, Sugiyama Y, Kasami T, & Okui J (1977) Complexity of the deadlock avoidance problem. In: In 2nd IBM Symposium on Mathematical Foundations of Computer Science IBM, pp 229–257
Balas, E. (1999). New classes of efficiently solvable generalized traveling salesman problems. Annals of Operations Research, 86, 529–558.
Balas, E., Simonetti, N., & Vazacopoulos, A. (2008). Job shop scheduling with setup times, deadlines and precedence constraints. Journal of Scheduling, 11(4), 253–262.
Behrens JK, Lange R, & Mansouri M (2019) A constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks. In: 2019 International Conference on Robotics and Automation (ICRA), IEEE, pp 8705–8711
Bektas, T. (2006). The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega, 34(3), 209–219.
Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615–627.
Bürgy, R. (2017). A neighborhood for complex job shop scheduling problems with regular objectives. Journal of Scheduling, 20(4), 391–422.
Burke, E. K., & Bykov, Y. (2017). The late acceptance hill-climbing heuristic. European Journal of Operational Research, 258(1), 70–78.
Cicirello, V. A., & Smith, S. F. (2005). Enhancing stochastic search performance by value-biased randomization of heuristics. Journal of Heuristics, 11, 5–34.
Dariano, A., Pacciarelli, D., & Pranzo, M. (2007). A branch and bound algorithm for scheduling trains in a railway network. European Journal of Operational Research, 183(2), 643–657.
Garey, M. R., & Johnson, D. S. (1977). Two-processor scheduling with start-times and deadlines. SIAM Journal on Computing, 6(3), 416–426.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. New York: Freeman.
Gervet C (1993) New structures of symbolic constraint objects: sets and graphs (extended abstract). In: Third workshop on constraint logic programming
Gombolay, M. C., Wilcox, R. J., & Shah, J. A. (2018). Fast scheduling of robot teams performing tasks with temporospatial constraints. IEEE Transactions on Robotics, 34(1), 220–239.
Groeflin, H., & Klinkert, A. (2009). A new neighborhood and tabu search for the blocking job shop. Discrete Applied Mathematics, 157(17), 3643–3655.
Habib MK, & Asama H (1991) Efficient method to generate collision free paths for an autonomous mobile robot based on new free space structuring approach. In: Proceedings IROS ’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, 563–567 2, https://doi.org/10.1109/IROS.1991.174534
Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine scheduling problems with blocking and no-wait in process. Operations Research, 44(3), 510–525.
John JA, & Draper NR(1980) An alternative family of transformations. Journal of the Royal Statistical Society Series C Applied Statistics 29(2): 190–197, http://www.jstor.org/stable/2986305
Kabir AM, Thakar S, Bhatt PM, Malhan RK, Rajendran P, Shah BC, & Gupta SK (2020) Incorporating motion planning feasibility considerations during task-agent assignment to perform complex tasks using mobile manipulators. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 5663–5670
Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. European Journal of operational research, 156(3), 752–768.
Lam, E., & Le Bodic, P. (2020). New valid inequalities in branch-and-cut-and-price for multi-agent path finding. Proceedings of the International Conference on Automated Planning and Scheduling, 30, 184–192.
Lange, J., & Werner, F. (2018). Approaches to modeling train scheduling problems as job-shop problems with blocking constraints. Journal of Scheduling, 21(2), 191–207.
Lavrov M (2018) An upper bound on the number of chordless cycles in an undirected graph. Mathematics Stack Exchange, https://math.stackexchange.com/q/2811761, https://math.stackexchange.com/q/2811761 (version: 2018-06-07), https://math.stackexchange.com/q/2811761
Liu, S. Q., & Kozan, E. (2011). Scheduling trains with priorities: A no-wait blocking parallel-machine job-shop scheduling model. Transportation Science, 45(2), 175–198.
Ma H, Wagner G, Felner A, Kumar JLTS, & Koenig S (2018) Multi-agent path finding with deadlines. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)
Mascis, A., & Pacciarelli, D. (2002). Job-shop scheduling with blocking and no-wait constraints. European Journal of Operational Research, 143(3), 498–517.
Mati, Y., Lahlou, C., & Dauzere-Peres, S. (2011). Modelling and solving a practical flexible job-shop scheduling problem with blocking constraints. International Journal of Production Research, 49(8), 2169–2182.
Moccia, L., Cordeau, J. F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics (NRL), 53(1), 45–59.
Mogali JK, van Hoeve WJ, & Smith SF (2020) Template matching and decision diagrams for multi-agent path finding. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Springer, pp 347–363
Mogali, J. K., Barbulescu, L., & Smith, S. F. (2021). Efficient primal heuristic updates for the blocking job shop problem. European Journal of Operational Research.
Möhring, R., Skutella, M., & Stork, F. (2004). Scheduling with and/or precedence constraints. SIAM Journal on Computing, 33(2), 393–415. https://doi.org/10.1137/S009753970037727X.
Rubinstein ZB, Smith SF, & Barbulescu L (2012) Incremental management of oversubscribed vehicle schedules in dynamic dial-a-ride problems. In: AAAI
Sammarra, M., Cordeau, J. F., Laporte, G., & Monaco, M. F. (2007). A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling, 10(4–5), 327–336.
Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219, 40–66.
Simonetti N, & Balas E (1996) Implementation of a linear time algorithm for certain generalized traveling salesman problems. In: International Conference on Integer Programming and Combinatorial Optimization, Springer, pp 316–329
Smith, S. F., & Cheng, C. C. (1993). Slack-based heuristics for constraint satisfaction scheduling. AAAI, 139–144.
Stavrou D, Timotheou S, Panayiotou C, & Polycarpou M (2017) Assignment and coordination of autonomous robots in container loading terminals. In: Proceedings 12th IFAC World Conference, (Reprinted in IFAC-PapersOnLine, Elsevier Science Direct, 50(1), pp.9712-9717)
Van Breedam A (1994) An Analysis of the Behavior of Heuristics for the Vehicle Routing Problem for a Selection of Problems with Vehicle-related, Customer-related, and Time-related Constraints. RUCA
Wagner G, & Choset H (2011) M*: A complete multirobot path planning algorithm with performance bounds. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
Wessén J, Carlsson M, & Schulte C (2020) Scheduling of dual-arm multi-tool assembly robots and workspace layout optimization. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Springer, pp 511–520
Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1), 9–9.
Yuan Z, & Gong Y (2016) Improving the speed delivery for robotic warehouses. In: Proceedings 8th IFAC Conference on Manufacturing Modeling, Management and Control, (Reprinted in IFAC-PapersOnLine, Elsevier Science Direct, 49(2), pp. 1164 - 1168)