Scenarios towards limiting global mean temperature increase below 1.5 °C

Nature Climate Change - Tập 8 Số 4 - Trang 325-332 - 2018
Joeri Rogelj1, Alexander Popp2, Katherine Calvin3, Gunnar Luderer2, Johannes Emmerling4, David Gernaat5, Shinichiro Fujimori1, Jessica Strefler2, Tomoko Hasegawa1, Giacomo Marangoni4, Volker Krey1, Elmar Kriegler2, Keywan Riahi1, Detlef P. van Vuuren5, Jonathan Doelman5, Laurent Drouet4, Jae Edmonds3, Oliver Fricko1, Mathijs Harmsen5, Peter Havlík1, Florian Humpenöder2, Elke Stehfest5, Massimo Tavoni6
1International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
2Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
3Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA
4Fondazione Eni Enrico Mattei, Milan, Italy
5PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
6Centro Euro-Mediterraneo sui Cambiamenti Climatici, Milan, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment Design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

Fujimori, S. et al. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob. Environ. Change 42, 268–283 (2017).

Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

Decision 1/CP.16 The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-term Cooperative Action Under the Convention (UNFCCC, 2010).

Paris Agreement (UNFCCC, 2015).

Emmerling, J. et al. The WITCH 2016 model — documentation and implementation of the Shared Socioeconomic Pathways. FEEM Working Paper 42.2016 (2016).

O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

Kriegler, E. et al. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).

Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2016).

Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5, 519–527 (2015).

MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

Schneider von Deimling, T. et al. Estimating the near-surface permafrost–carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

Popp, A. et al. in Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

Clarke, L. et al. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6, 413–510 (IPCC, Cambridge Univ. Press, 2014).

Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

Bauer, N. et al. Shared Socio-Economic Pathways of the energy sector — quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7, 916–944 (2015).

Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2016).

Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11, 811–922 (IPCC, Cambridge Univ. Press, 2014).

Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

Tavoni, M. & Tol, R. Counting only the hits? The risk of underestimating the costs of stringent climate policy. Climatic Change 100, 769–778 (2010).

Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133–7142 (2016).

Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

Su, X. et al. Emission pathways to achieve 2.0 °C and 1.5 °C climate targets. Earths Future 5, 592–604 (2017).

Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Last chance for carbon capture and storage. Nat. Clim. Change 3, 105–111 2013).

Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge Univ. Press, 2014).

Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).

Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

Claudia, T., Brian, O. N. & Jean-François, L. Sensitivity of regional climate to global temperature and forcing. Environ. Res. Lett. 10, 074001 (2015).

Hendriks C., Graus W. & Van Bergen F. Global Carbon Dioxide Storage Potential and Costs Report No. EEP-02001 (Ecofys, 2004).

Kriegler, E. et al. Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Social. Change 90, 45–61 (2015).

Decision 24/CP.19. Revision of the UNFCCC Reporting Guidelines on Annual Inventories for Parties included in Annex I to the Convention 1–54 (UNFCCC, 2013).

IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of potentially lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 031003 (2014).

IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–33 (Cambridge Univ. Press, 2014).