Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations

Tarek Saanouni1, Chengbin Xu2
1Department of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia
2Graduate School of China Academy of Engineering Physics, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alharbi, M. G., Saanouni, T.: Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations. J. Math. Phys. 60, 081514 (2019)

Arora, A. K.: Scattering of radial data in the focusing NLS and generalized hartree equations. Discr. Cont. Dyn. Syst. 39(11), 6643–6668 (2019)

Bergé, L., Couairon, A.: Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas. 7, 210–230 (2000)

Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3D radial focusing cubic NLS. Proc. Amer. Math. Soc. 145(11), 4859–4867 (2017)

Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation,. Commun. Math. Phys. 334, 1573–1615 (2015)

Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger-Hartree equation. Evol. Equ. Control Theory 4(4), 431–445 (2015)

Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Equations aux Dérivées Partielles 2003–2004, Sémin. Équ. Dériv. Partielles (Ecole Polytech., Palaiseau), Exp. no. XIX, p. 26 (2004)

Ghanmi, R., Saanouni, T.: Asymptotics for a class of heat equations with inhomogeneous nonlinearity. Analysis 1, 38 (2018)

Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)

Kenig, C. E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

Lieb, E.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

Moroz, V., Schaftingen, J. V.: Groundstates of non-linear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)

Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

Saanouni, T.: A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl. 470, 1004–1029 (2019)

Saanouni, T.: Scattering threshold for the focusing Choquard equation. Nonlinear Differ. Equ. Appl. 41, 26 (2019)

Tao, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial. Differ. Equ. 1(1), 1–48 (2004)

Tarulli, M., Venkov, G.: Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations, J. Evol Equ. (2020)