Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alharbi, M. G., Saanouni, T.: Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations. J. Math. Phys. 60, 081514 (2019)
Arora, A. K.: Scattering of radial data in the focusing NLS and generalized hartree equations. Discr. Cont. Dyn. Syst. 39(11), 6643–6668 (2019)
Bergé, L., Couairon, A.: Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas. 7, 210–230 (2000)
Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3D radial focusing cubic NLS. Proc. Amer. Math. Soc. 145(11), 4859–4867 (2017)
Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation,. Commun. Math. Phys. 334, 1573–1615 (2015)
Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger-Hartree equation. Evol. Equ. Control Theory 4(4), 431–445 (2015)
Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Equations aux Dérivées Partielles 2003–2004, Sémin. Équ. Dériv. Partielles (Ecole Polytech., Palaiseau), Exp. no. XIX, p. 26 (2004)
Ghanmi, R., Saanouni, T.: Asymptotics for a class of heat equations with inhomogeneous nonlinearity. Analysis 1, 38 (2018)
Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)
Kenig, C. E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)
Lieb, E.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
Moroz, V., Schaftingen, J. V.: Groundstates of non-linear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)
Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)
Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Saanouni, T.: A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl. 470, 1004–1029 (2019)
Saanouni, T.: Scattering threshold for the focusing Choquard equation. Nonlinear Differ. Equ. Appl. 41, 26 (2019)
Tao, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial. Differ. Equ. 1(1), 1–48 (2004)