Scattered data interpolation methods for electronic imaging systems: a survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
D. N. Fogel, “Image rectification with radial basis functions: applications to RS/GIS data integration,”Proceedings of the Third International Conference on Integrating GIS and Environmental Modeling, Santa Fe (1996) http://www.ncgia.ucsb.edu/∼fogel/mqregdoc.html
Pantone Color Formula Guide 1000, Pantone Inc., New Jersey (1991–1992).
L. L. Schumaker, “Fitting surfaces to scattered data,” inApproximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds., pp. 203–268, Academic, New York, (1976).
R. E. Barnhill, “Representation and approximation of surfaces,” inMathematical Software III, J. R. Rice, Ed., pp. 69–120, Academic, New York (1977).
Franke, 1982, Math. Comput., 38, 181
P. Alfeld, “Scattered data interpolation in three or more variables,” inMathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker, Eds., pp. 1–33, Academic, New York (1989).
R. Franke and G. M. Nielson, “Scattered data interpolation and applications: a tutorial and survey,” inGeometric Modelling Methods and Applications, H. Hagen and D. Roller, Eds., pp. 131–160, Springer, Berlin (1991).
Foley, 1994, Surv. Math. Ind., 4, 71
G. M. Nielson, H. Hagen, and H. Müller,Scientific Visualisation, IEEE, New York (1997).
R. N. Bracewell,Two-Dimensional Imaging, pp. 247–257, Prentice-Hall, NJ, Englewood Cliffs (1995).
P. Lancaster and K. Šalkauskas,Curve and Surface Fitting, Academic, London (1986).
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,Computational Geometry—Algorithms and Applications, Springer, Berlin (1997).
G. Farin,Curves and Surfaces for Computer Aided Geometric Design, 4th ed., Academic, San Diego (1997).
J. D. Boissonnat, “An hierarchical representation of objects: the Delaunay tree,”Proceedings of the 2nd ACM Symposium on Computational Geometry, pp. 260–268, Yorktown Heights (June 1986).
J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,Computer Graphics: Principles and Practice, 2nd ed., Wesely, Reading, MA (1990).
F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer, New York (1985).
G. M. Nielson and R. Franke, “Surface construction based upon triangulations,” inSurfaces in CAGD, R. N. Barnhill and W. Boehm, Eds., pp. 163–177, North Holland, Amsterdam (1983).
G. Strang and G. J. Fix,An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ (1973).
G. Farin, “Smooth interpolation to scattered 3D data,”Surfaces in CAGD, R. N. Barnhill and W. Boehm, Eds., pp. 43–63, North Holland, Amsterdam (1983).
D. Salesin, D. Lischinski, and T. DeRose, “Reconstructing illumination functions with selected discontinuities,”Proc. of the Third Eurographics Workshop on Rendering, pp. 99–112 (1992).
D. Shepard, “A two-dimensional interpolation function for irregularly spaced data,”Proceedings of the 23rd ACM National Conference, pp. 517–524, ACM, NY (1968).
Gordon, 1978, Math. Comput., 32, 253
D. F. Watson,Contouring: A Guide to the Analysis and Display of Spatial Data, Pergamon, Oxford (1992).
R. Sibson, “A brief description of natural neighbour interpolation,” inInterpreting Multivariate Data, V. Barnett Ed., pp. 21–36, Wily, Chichester (1981).
H. R. Kang,Color Technology for Electronic Imaging Devices, SPIE, Bellingham, WA, 1997.
E. W. Weisstein,CRC Concise Encyclopedia of Mathematics, CRC Press, Boca Raton, FL (1999).