Scaling-up production of cost-effective and eco-friendly bio-fertilizer and its application on Barley green fodder via IoT hydroponic system
Tóm tắt
Plant-associated microbes (endophytes) have a significant relationship to enhance plant growth and crop productivity by producing proficient bioactive metabolites. Since endophytes promoted plant growth either directly by releasing active metabolites such as phytohormones or indirectly by suppressing the growth of phytopathogens, so, in this work, biomass yield of local endophytic Trichoderma harzianum was maximized at shake-flask scale and scaled up via 7-L Bioflo310 fermenter using continuous exponential fed-batch fermentation mode. Subsequently, the effect of these cells as bio-fertilizer was assessed using two-barley grain genotypes (Russian and Egyptian seeds) via an intelligent hydroponic system based on Internet of Things (IoT). To reduce the cost of a biomass production line, agro-waste media containing potato, onion, garlic, pea, and cabbage peels were chosen as the culturing medium. The pea peel medium was found to be the best producer of biomass (2.2 g/L). The cultivation factors were evaluated to improve this biomass yield. The results showed that the maximum biomass production (4.9 g/L) was reported by adjusting the medium pH at 5.0 that inoculated with 10% of spore suspension, then incubated at 30°C, and 200 rpm. Then, this biomass yield was scaled up kinetically (505.4 g/L) by using exponential fed-batch fermentation mode via a 7-L bioreactor. The stimulation impacts of this endophytic T. harzianum on the growth of different barley genotypes (Russian and Egyptian seeds) were determined using a controlled hydroponic chamber. The total chlorophyll, carotenoid, and carbohydrate amounts in treated Russian showed the proficient stimulation percentage (81.05, 80, 40.8%) compared to the Egyptian barley groups (76.39, 73.5, 25.9%) respectively. Also, the maximum carbohydrate content (83.95 ± 1.7%) was recorded in the case of Russian barley. Via this work, the optimal combination conditions for the cost-effective biomass production of endophytic T. harzianum were designed industrially via a fed-batch fermentation system using the cheapest culturing medium. Furthermore, by applying this promising bio-fertilizer, the total cost of barley production via an IoT hydroponic growing system was reduced. Besides, these animal diets (sprouted barley) could be produced in 3 cycles per month.
Tài liệu tham khảo
del Rodríguez CHM, Evans CH, de Abreu ML, de Macedo MD, Ndacnou KM, Bekele BK, Barreto WR (2021) New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci Rep 11:5671
Tseng YH, Rouina H, Groten K, Rajani P, Furch ACU, Reichelt M, Baldwin IT, Nataraja KN, Uma Shaanker R, Oelmüller R (2020) An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Front Plant Sci 11:573670. https://doi.org/10.3389/fpls.2020.573670
Harman EG, Doni F, Khadka BR, Uphoff N (2019) Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J Appl Microbiol 130:529–546
Sallam N, Ali FE, Seleim AAM, Khalil Bagy MMH (2021) Endophytic fungi associated with soybean plants and their antagonistic activity against Rhizoctonia solani. Egypt J Biol Pest Control 31(1):54. https://doi.org/10.1186/s41938-021-00402-9
Sellal Z, Touhami OA, Chliyeh M, Mouden N, Selmaoui K, Dahmani J, Benkirane R, Modafar Ch EL, Douira A (2020) Effect of seeds treatment with Trichoderma harzianum on argan plant growth. Plant Cell Biotechnol Mol Biol 21(11&12):69–77
Yadav U, Choudhury PP (2014) Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp. Lett Appl Microbiol 59(5):479–486. https://doi.org/10.1111/lam.12306
Yadav J, Verma PJ, Tiwari K (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci 4(3):291–299. https://doi.org/10.3923/ajbs.2011.291.299
Alınç T, Cusumano A, Peri E, Torta L, Colazza S (2021) Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity. J Chem Ecol 47(4-5):455–462. https://doi.org/10.1007/s10886-021-01260-3
Zin AN, Badaluddin A (2020) Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 65(2):168–178. https://doi.org/10.1016/j.aoas.2020.09.003
Kthiri Z, Jabeur MB, Machraoui M, Gargouri S, Hiba K, Hamada W (2020) Coating seeds with Trichoderma strains promotes plant growth and enhance the systemic resistance against Fusarium crown rot in durum wheat. Egypt J Biol Pest Control 30(1):139. https://doi.org/10.1186/s41938-020-00338-6
Nuangmek W, Aiduang W, Kumla J, Lumyong S, Suwannarach N (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front Microbiol 12:634772. https://doi.org/10.3389/fmicb.2021.634772
Thakur R (2021) Use of Trichoderma spp. as biocontrol for disease management. Indian Farmer 8(01):108–115
Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil 316(1-2):13–24. https://doi.org/10.1007/s11104-008-9754-6
Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS (2017) Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Braz J Bota 40(3):651–664. https://doi.org/10.1007/s40415-017-0382-3
El-Shahat HS (2020) Endophytic fungal research in Egypt: present status. Microbial Biosyst 5(1):122–127. https://doi.org/10.21608/mb.2020.104708
Rhouma BM, Kriaa M, Nasr BY, Mellouli L, Kammoun R (2020) A new endophytic Fusarium oxysporum gibberellic acid: optimization of production using combined strategies of experimental designs and potency on tomato growth under stress condition. BioMed Res Int 2020:4587148.
Bodie E, Virag A, Pratt JR, Leiva N, Ward M, Dodge T (2021) Reduced viscosity mutants of Trichoderma reesei with improved industrial fermentation characteristics. J Ind Microbiol Biotechnol 48(1-2):kuab014
Rayhane H, Josiane M, Gregoria M, Yiannis K, Nathalie D, Ahmed M, Sevastianos R (2019) From flasks to single used bioreactor: scale-up of solid-state fermentation process for metabolites and conidia production by Trichoderma asperellum. J Environ Manag 252:109496. https://doi.org/10.1016/j.jenvman.2019.109496
El Enshasy HA, Elsayed EA, Suhaimi N et al (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18(1):71. https://doi.org/10.1186/s12896-018-0481-7
Cheng NG, Hasan M, Kumoro AC, Ling CF, Tham M (2009) Production of ethanol by fed-batch fermentation. J Sci Technol Pertanika 17(2):399–408
Faruk MI (2019) Efficacy of Trichoderma harzianum formulations against seedling disease of barley caused by Sclerotium rolfsii. J Genet 4(1):013
Narimani T, Toorchi M, Tarinejad RA, Mohammadi AS, Mohammadi H (2020) Physiological and biochemical evaluation of barley (Hordeumvulgare L.) under salinity stress. J Agr Sci Tech 22(4):1009–1021
Lakshmi VC, Avarna K, Bhavani ND, Spandana SG (2020) Hydroponic farm monitoring system using IoT. IRE J 3(10):257–261
Ullah A, Aktar S, Sutar N, Kabir R, Hossain A (2019) Cost effective smart hydroponic monitoring and controlling system using IoT. Intell Control Automation 10:142–154
Bakhtar N, Chhabria V, Chougle I, Vidhrani H, Hande R (2018) IoT based hydroponic farm. In: 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp 205–209
Suhan M, Murali S, Bharadwaj TS, PDR J (2020) Automated hydroponic plant growth system using IOT. Int Res J Modernization Eng Technol Sci 2(8):1406–1415
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolf S, Terzano R, Cesco S (2019) Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front Plant Sci 10:923. https://doi.org/10.3389/fpls.2019.00923
Simon S, Anamika (2011) Agro-based waste products as a substrate for mass production of Trichoderma spp. J Agric Sci 3(4):168–171
Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual, 2nd edn. International Center for Agricultural Research in the Dry Areas ICARDA, Aleppo
Licitra G, Hernandez MT, Van Soest PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol 57(4):347–358. https://doi.org/10.1016/0377-8401(95)00837-3
Chalupa W, Sniffen JC (1994) Carbohydrate, protein and amino acid nutrition of lactating dairy cattle. In Recent advances in animal Nutrition. Loughborough: Nottingham University Press 265–275
Sniffen CJ, O'Connor DJ, Van Soest JP, Fox GD, Russell BJ (1992) A net carbohydrate and protein system for evaluating cattle diets: II. carbohydrate and protein availability. J Anim Sci 70(11):3562–3577. https://doi.org/10.2527/1992.70113562x
Van Soest PJ, Robertson BJ, Lewis AB (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Thomas TA (1977) An automated procedure for the determination of soluble carbohydrate in herbage. J Sci Food Agric 28(7):639–642. https://doi.org/10.1002/jsfa.2740280711
Tančić-Živanov S, Medić-Pap S, Danojević D, Prvulović D (2020) Effect of Trichoderma spp. on growth promotion and antioxidative activity of pepper seedlings. Braz Arch Biol Technol 63:e20180659. https://doi.org/10.1590/1678-4324-2020180659
Saranraj P, Jayaprakash A (2018) Effect of novel vegetable peel waste culture medium on the growth of industrially beneficial fungi (Aspergillus niger and Penicillium chrysogenum). J Funct Mater Biomol 2(2):58–64
Ravimannan N, Arulanantham R, Pathmanathan S, Kularajani N (2014) Alternative culture media for fungal growth using different formulation of protein sources. Ann Biol Res 5:36–39
Tembe S, Khan S, Acharekar R (2018) IoT based automated hydroponics system. Int J Sci Eng Res 9:67–71
Kaewpreak N, Chaopisit I, Arkom P (2018) Cloud IoT based greenhouse monitoring system. Int J Eng Res Appl 1:35–41
Sharma N, Acharya S, Kumar K, Singh N, Chaurasia OP (2019) Hydroponics as an advanced technique for vegetable production: an overview. J Soil Water Conserv 17:364–371
Pascual MP, Lorenzo GA, Gabriel AG (2018) Vertical farming using hydroponic system: toward a sustainable onion production in Nueva Ecija, Philippines. Open J Ecol 8(01):25–41. https://doi.org/10.4236/oje.2018.81003
Garuma Z, Gurmessa K (2021) Evaluation of hydroponic fodder performance of different varieties of sorghum. Int J Res -GRANTHAALAYAH 9(2):1–10
Sidiq A, Tariq OM, Zehra A, Maliik S (2020) ACHPA: a sensor-based system for automatic environmental control in hydroponics. Food Sci Technol, Campinas 40(3):671–680
Emam SAM, Badr MMA, Baker AA, Ismail SF, Solimman MA (2018) Evolution of some Egyptian strains barley cultivators for green fodder hydroponic system and prediction digestibility values by in-vitro daisy II incubator. Egypt J Nutr Feeds 21(2):389–406