Scaling of spectra of random convolutions with three-element digit sets
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. X. An, X. Y. Fu and C. K. Lai, On Spectral Cantor-Moran measures and a variant of Bourgain’s sum of sine problem, Adv. Math., 349 (2019), 84–124.
L. X. An, X. G. He and K. S. Lau, Spectrality of a class of infinite convolutions, Adv. Math., 283 (2015), 362–376.
X. R. Dai, X. G. He and C. K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math., 242 (2013), 187–208.
X. R. Dai, X. G. He and K. S. Lau, On spectral N-Bernoulli measures, Adv. Math., 259 (2014), 511–531.
Q. R. Deng, On the spectra of Sierpinski-type self-affine measures, J. Funct. Anal., 270 (2016), 4426–4442.
D. Dutkay, D. G. Han and Q. Y. Sun, On the spectra of a Cantor measure, Adv. Math., 221 (2009), 251–276.
D. Dutkay and J. Haussermann, Number theory problems from the harmonic analysis of a fractal, J. Number Theory, 159 (2016), 7–26.
D. Dutkay, J. Haussermann and C. K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc., 371 (2019), 1439–1481.
D. Dutkay and I. Kraus, Number theoretic considerations related to the scaling of spectra of Cantor-type measures, Anal. Math., 44 (2018), 335–367.
D. Dutkay and C. K. Lai, Uniformity of measures with Fourier frames, Adv. Math., 252 (2014), 684–707.
D. Dutkay and C. K. Lai, Spectral measures generated by arbitrary and random convolutions, J. Math. Pures. Appl., 107 (2017), 183–204.
Y. S. Fu, X. G. He and Z. X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl., 116 (2018), 105–131.
Y. S. Fu and Z. X. Wen, Spectrality of infinite convolutions with three-element digit sets, Monatsh. Math., 183 (2017), 465–485.
B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16 (1974), 101–121.
X. G. He, M. W. Tang and Z. Y. Wu, Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures, J. Funct. Anal., 277 (2019), 3688–3722.
P. Jorgensen, K. Kornelson and K. Shuman, Scaling by 5 on a $${1 \over 4}$$-Cantor measure, Rocky Mountain J. Math., 44 (2014), 1881–1901.
P. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 75 (1998), 185–228.
R. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81 (2000), 209–238.
T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11 (2004), 251–258.