Scalable generation of sensory neurons from human pluripotent stem cells

Elsevier BV - Tập 18 - Trang 1030-1047 - 2023
Tao Deng1, Vukasin M. Jovanovic1, Carlos A. Tristan1, Claire Weber1, Pei-Hsuan Chu1, Jason Inman1, Seungmi Ryu1, Yogita Jethmalani1, Juliana Ferreira de Sousa1, Pinar Ormanoglu1, Prisca Twumasi1, Chaitali Sen1, Jaehoon Shim2,3, Selwyn Jayakar2,3, Han-Xiong Bear Zhang3, Sooyeon Jo3, Weifeng Yu4, Ty C. Voss1, Anton Simeonov1, Bruce P. Bean3
1National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
2F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
3Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
4Sophion Bioscience, North Brunswick, NJ 08902, USA

Tài liệu tham khảo

Aguet, 2017, Genetic effects on gene expression across human tissues, Nature, 550, 204, 10.1038/nature24277 Anastassiadis, 2011, Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity, Nat. Biotechnol., 29, 1039, 10.1038/nbt.2017 Black, 2018, Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6, J. Neurophysiol., 120, 1374, 10.1152/jn.00158.2018 Bartesaghi, 2019, PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis, Cell Rep., 26, 3484, 10.1016/j.celrep.2019.02.098 Basbaum, 2009, Cellular and molecular mechanisms of pain, Cell, 139, 267, 10.1016/j.cell.2009.09.028 Bautista, 2006, TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents, Cell, 124, 1269, 10.1016/j.cell.2006.02.023 Bennett, 2019, The role of voltage-gated sodium channels in pain signaling, Physiol. Rev., 99, 1079, 10.1152/physrev.00052.2017 Blanchard, 2015, Selective conversion of fibroblasts into peripheral sensory neurons, Nat. Neurosci., 18, 25, 10.1038/nn.3887 Caterina, 1999, Sense and specificity: a molecular identity for nociceptors, Curr. Opin. Neurobiol., 9, 525, 10.1016/S0959-4388(99)00009-4 Chambers, 2012, Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors, Nat. Biotechnol., 30, 715, 10.1038/nbt.2249 Chen, 2021, A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells, Nat. Methods, 18, 528, 10.1038/s41592-021-01126-2 Chuang, 2018, Involvement of advillin in somatosensory neuron subtype-specific axon regeneration and neuropathic pain, Proc. Natl. Acad. Sci. USA, 115, E8557, 10.1073/pnas.1716470115 Cohen, 2021, Chronic pain: an update on burden, best practices, and new advances, Lancet, 397, 2082, 10.1016/S0140-6736(21)00393-7 Cravatt, 2001, Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase, Proc. Natl. Acad. Sci. USA, 98, 9371, 10.1073/pnas.161191698 Davidson, 2014, Human sensory neurons: membrane properties and sensitization by inflammatory mediators, Pain, 155, 1861, 10.1016/j.pain.2014.06.017 Desiderio, 2019, Prdm12 directs nociceptive sensory neuron development by regulating the expression of the NGF receptor TrkA, Cell Rep., 26, 3522, 10.1016/j.celrep.2019.02.097 DuBreuil, 2021, A high- content platform for physiological profiling and unbiased classification of individual neurons, Cell Rep. Methods, 1, 100004, 10.1016/j.crmeth.2021.100004 Eberhardt, 2015, Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors, Stem Cell Rep., 5, 305, 10.1016/j.stemcr.2015.07.010 Enright, 2016, Long-term non-invasive interrogation of human dorsal root ganglion neuronal cultures on an integrated microfluidic multielectrode array platform, Analyst, 141, 5346, 10.1039/C5AN01728A Ernsberger, 2009, Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia, Cell Tissue Res., 336, 349, 10.1007/s00441-009-0784-z Gold, 2010, Nociceptor sensitization in pain pathogenesis, Nat. Med., 16, 1248, 10.1038/nm.2235 Huggins, 2012, Pain, 153, 1837, 10.1016/j.pain.2012.04.020 Jahangir, 2009, Identification and SAR of novel diaminopyrimidines. Part 2: the discovery of RO-51, a potent and selective, dual P2X3/P2X2/3 antagonist for the treatment of pain, Bioorg. Med. Chem. Lett., 19, 1632, 10.1016/j.bmcl.2009.01.097 Jayakar, 2021, Developing nociceptor-selective treatments for acute and chronic pain, Sci. Transl. Med., 13, eabj9837, 10.1126/scitranslmed.abj9837 Julius, 2013, TRP channels and pain, Annu. Rev. Cell Dev. Biol., 29, 355, 10.1146/annurev-cellbio-101011-155833 Kerbrat, 2016, Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase, N. Engl. J. Med., 375, 1717, 10.1056/NEJMoa1604221 Kim, 2018, Comparative transcriptome profiling of the human and mouse dorsal root ganglia, Pain, 159, 1325, 10.1097/j.pain.0000000000001217 Lachmann, 2018, Massive mining of publicly available RNA-seq data from human and mouse, Nat. Commun., 9, 1366, 10.1038/s41467-018-03751-6 Levanon, 2002, The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons, EMBO J., 21, 3454, 10.1093/emboj/cdf370 Lou, 2013, Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors, J. Neurosci., 33, 870, 10.1523/JNEUROSCI.3942-12.2013 McDermott, 2019, Defining the functional role of Na V 1.7 in human nociception, Neuron, 101, 905, 10.1016/j.neuron.2019.01.047 Middleton, 2021, Studying human nociceptors: from fundamentals to clinic, Brain, 144, 1312, 10.1093/brain/awab048 Mogil, 2009, Animal models of pain: progress and challenges, Nat. Rev. Neurosci., 10, 283, 10.1038/nrn2606 Namer, 2019, Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors, EBioMedicine, 39, 401, 10.1016/j.ebiom.2018.11.042 Nickolls, 2020, Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells, Cell Rep., 30, 932, 10.1016/j.celrep.2019.12.062 Ramarao, 2005, A fluorescence-based assay for fatty acid amide hydrolase compatible with high-throughput screening, Anal. Biochem., 343, 143, 10.1016/j.ab.2005.04.032 Rasband, 2010, The axon initial segment and the maintenance of neuronal polarity, Nat. Rev. Neurosci., 11, 552, 10.1038/nrn2852 Risso, 2014, Normalization of RNA-seq data using factor analysis of control genes or samples, Nat. Biotechnol., 32, 896, 10.1038/nbt.2931 Saito-Diaz, 2021, Derivation of peripheral nociceptive, mechanoreceptive, and proprioceptive sensory neurons from the same culture of human pluripotent stem cells, Stem Cell Rep., 16, 446, 10.1016/j.stemcr.2021.01.001 Salio, 2014, Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF), J. Neurosci., 34, 13819, 10.1523/JNEUROSCI.0808-14.2014 Schmalhofer, 2008, ProTx-II , a selective inhibitor of Na V 1 . 7 sodium channels , blocks action potential propagation in nociceptors, Mol. Pharmacol., 74, 1476, 10.1124/mol.108.047670 Schwartzentruber, 2018, Molecular and functional variation in iPSC-derived sensory neurons, Nat. Genet., 50, 54, 10.1038/s41588-017-0005-8 Shiers, 2020, Quantitative differences in neuronal subpopulations between mouse and human dorsal root ganglia demonstrated with RNAscope in situ hybridization, Pain, 161, 2410, 10.1097/j.pain.0000000000001973 Shiers, 2021, Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn, J. Comp. Neurol., 529, 2771 Tavares-Ferreira, 2022, Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors, Sci. Transl. Med., 14, eabj8186, 10.1126/scitranslmed.abj8186 Tchieu, 2017, A modular platform for differentiation of human PSCs into all major ectodermal lineages, Cell Stem Cell, 21, 399, 10.1016/j.stem.2017.08.015 Teichert, 2015, Constellation pharmacology: a new paradigm for drug discovery, Annu. Rev. Pharmacol. Toxicol., 55, 573, 10.1146/annurev-pharmtox-010814-124551 Tristan, 2021, Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells, Stem Cell Rep., 16, 3076, 10.1016/j.stemcr.2021.11.004 Usoskin, 2015, Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing, Nat. Neurosci., 18, 145, 10.1038/nn.3881 Wainger, 2015, Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts, Nat. Neurosci., 18, 17, 10.1038/nn.3886 Woolf, 2007, Nociceptors--noxious stimulus detectors, Neuron, 55, 353, 10.1016/j.neuron.2007.07.016 Yekkirala, 2017, Breaking barriers to novel analgesic drug development, Nat. Rev. Drug Discov., 16, 545, 10.1038/nrd.2017.87 Young, 2014, Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research, Mol. Ther., 22, 1530, 10.1038/mt.2014.86 Zeidler, 2021, NOCICEPTRA: gene and microRNA signatures and their trajectories characterizing human iPSC-derived nociceptor maturation, Adv. Sci., 8, e2102354, 10.1002/advs.202102354 Zhang, 2007, Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets, Neuropharmacology, 52, 1095, 10.1016/j.neuropharm.2006.11.009 Zheng, 2019, Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties, Neuron, 103, 598, 10.1016/j.neuron.2019.05.039