Scalable flood inundation mapping using deep convolutional networks and traffic signage

Computational Urban Science - Tập 3 - Trang 1-19 - 2023
Bahareh Alizadeh1, Amir H. Behzadan1
1Department of Construction Science, Texas A&M University, College Station, USA

Tóm tắt

Floods are one of the most prevalent and costliest natural hazards globally. The safe transit of people and goods during a flood event requires fast and reliable access to flood depth information with spatial granularity comparable to the road network. In this research, we propose to use crowdsourced photos of submerged traffic signs for street-level flood depth estimation and mapping. To this end, a deep convolutional neural network (CNN) is utilized to detect traffic signs in user-contributed photos, followed by comparing the lengths of the visible part of detected sign poles before and after the flood event. A tilt correction approach is also designed and implemented to rectify potential inaccuracy in pole length estimation caused by tilted stop signs in floodwaters. The mean absolute error (MAE) achieved for pole length estimation in pre- and post-flood photos is 1.723 and 2.846 in., respectively, leading to an MAE of 4.710 in. for flood depth estimation. The presented approach provides people and first responders with a reliable and geographically scalable solution for estimating and communicating real-time flood depth data at their locations.

Tài liệu tham khảo

Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., … & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. https://doi.org/10.1002/2016EF000485 Alinezhad, A., Gohari, A., Eslamian, S., Baghbani, R. (2020). Uncertainty Analysis in Climate Change Projection Using Bayesian Approach. In World Environmental and Water Resources Congress. (2020). Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, 167–174. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784482964.017 Alizadeh, B., & Behzadan, A. H. (2022a). Blupix: citizen science for flood depth estimation in urban roads. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities, 16–19. https://doi.org/10.1145/3557916.3567824 Alizadeh, B., & Behzadan, A. H. (2022b). Crowdsourced-based deep convolutional networks for urban flood depth mapping. arXiv preprint arXiv:2209.09200. https://arxiv.org/abs/2209.09200v1 Alizadeh B., Li D., Zhang Z., Behzadan A.H. (2021). Feasibility Study of Urban Flood Mapping Using Traffic Signs for Route Optimization. 28th EG-ICE International Workshop on Intelligent Computing in Engineering. Berlin, Germany, 572–581. https://arxiv.org/abs/2109.11712. Alizadeh, B., Li, D., Hillin, J., Meyer, M. A., Thompson, C. M., Zhang, Z., & Behzadan, A. H. (2022). Human-centered flood mapping and intelligent routing through augmenting flood gauge data with crowdsourced street photos. Advanced Engineering Informatics, 54, 101730. https://doi.org/10.1016/j.aei.2022.101730 Alizadeh Kharazi, B., & Behzadan, A. H. (2021). Flood depth mapping in street photos with image processing and deep neural networks. Computers, Environment and Urban Systems, 88, 101628. https://doi.org/10.1016/j.compenvurbsys.2021.101628 Arabi, M., Hyun, K., & Mattingly, S. P. (2021). Adaptable Resilience Assessment Framework to Evaluate an Impact of a Disruptive Event on Freight Operations No. TRBAM-21–03974. https://doi.org/10.1177/03611981211033864 Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134(3), 387–401. https://doi.org/10.1007/s10584-014-1084-5 Asner, G. P. (2001). Cloud cover in Landsat observations in the Brazilian Amazon. International Journal of Remote Sensing, 22, 3855–3862. https://doi.org/10.1080/01431160010006926 Beck, J. L., & Katafygiotis, L. S. (1998). Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics, 124(4), 455–461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455) Bjorvatn, K. (2000). Urban infrastructure and industrialization. J. Urban Economics, 48(2), 205–218. https://doi.org/10.1006/juec.1999.2162 Blupix (2020). Blupix application. Available at https://blupix.geos.tamu.edu/ Bochkovskiy, A. Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint. https://arxiv.org/abs/2004.10934. Bochkovskiy, A. (2020). Darknet: Open Source Neural Networks in Python. https://github.com/AlexeyAB/darknet. (Accessed June 2021). Bowes, B. D., Tavakoli, A., Wang, C., Heydarian, A., Behl, M., Beling, P. A., & Goodall, J. L. (2021). Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning. Journal of Hydroinformatics, 23(3), 529–547. https://doi.org/10.2166/hydro.2020.080 Bradshaw, C. J., Sodhi, N. S., & PEH, K. S. H., & Brook, B. W. (2007). Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 13(11), 2379–2395. https://doi.org/10.1111/j.1365-2486.2007.01446.x Brown, K. M., Hambidge, C. H., & Brownett, J. M. (2016). Progress in operational flood mapping using satellite synthetic aperture radar (SAR) and airborne light detection and ranging (LiDAR) data. Progress in Physical Geography, 40(2), 196–214. https://doi.org/10.1177/0309133316633570 Browne, M. W. (2000). Cross-Validation Methods. Journal of Mathematical Psychology, 44(1), 108–132. https://doi.org/10.1006/jmps.1999.1279 Centre for Research on the Epidemiology of Disasters (CRED) (2022). 2021 Disasters in numbers. Institute Health and Society – UCLouvain, Brussels, Belgium. https://cred.be/sites/default/files/2021_EMDAT_report.pdf. Changnon, S. A. 2000. A defining event for flood mitigation policy in the United States. floods, 1, 288. Chaudhary, P., D’Aronco, S., Leitão, J. P., Schindler, K., & Wegner, J. D. (2020). Water level prediction from social media images with a multi-task ranking approach. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 252–262. https://doi.org/10.1016/j.isprsjprs.2020.07.003 Chaudhary, P., D'Aronco, S., Moy de Vitry, M., Leitão, J. P., & Wegner, J. D. (2019). Flood-water level estimation from social media images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(2/W5), 5–12. https://doi.org/10.5194/isprs-annals-IV-2-W5-5-2019 Chew, C., Reager, J. T., & Small, E. (2018). CYGNSS data map flood inundation during the 2017 Atlantic hurricane season. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27673-x Cohen, S., Raney, A., Munasinghe, D., Loftis, J. D., Molthan, A., Bell, J., ... & Tsang, Y. P. (2019). The Floodwater Depth Estimation Tool (FwDET v2. 0) for improved remote sensing analysis of coastal flooding. Natural Hazards and Earth System Sciences, 19(9), 2053-2065. https://doi.org/10.5194/nhess-19-2053-2019. Crabit, A., Colin, F., Bailly, J. S., Ayroles, H., & Garnier, F. (2011). Soft water level sensors for characterizing the hydrological behaviour of agricultural catchments. Sensors, 11(5), 4656–4673. https://doi.org/10.3390/s110504656 Crager, M. R., & Reitman, M. A. (1991). Running average analysis of clinical trial ambulatory blood pressure data. Biometrics, 129–137. https://www.jstor.org/stable/2532501 Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002 Davis, S. A., & Skaggs, L. L. (1992). Catalog of residential depth-damage functions used by the army corps of engineers in flood damage estimation. ARMY ENGINEER INST FOR WATER RESOURCES ALEXANDRIA VA. https://apps.dtic.mil/sti/citations/ADA255462. Dong, S., Yu, T., Farahmand, H., & Mostafavi, A. (2021). A hybrid deep learning model for predictive flood warning and situation awareness using channel network sensors data. Computer-Aided Civil and Infrastructure Engineering, 36(4), 402–420. https://doi.org/10.1111/mice.12629 Du, Z. L., Wang, H. N., & Zhang, L. Y. (2008). A running average method for predicting the size and length of a solar cycle. Chinese Journal of Astronomy and Astrophysics, 8(4), 477. https://doi.org/10.1088/1009-9271/8/4/12 Eby, M., & Ensor, C. (2019). Understanding FEMA flood maps and limitations. First Street Foundation (March 21). https://firststreet.org/research-lab/published-research/understanding-fema-flood-maps-and-limitations/. Farhadmanesh, M., Cross, C., Mashhadi, A. H., Rashidi, A., & Wempen, J. (2021). Use of Mobile Photogrammetry Method for Highway Asset Management (No. TRBAM-21–01864). https://doi.org/10.1177/03611981211001855 Federal Highway Administration (2004). Manual on Uniform Traffic Control Devices (MUTCD): Standard highway signs. https://mutcd.fhwa.dot.gov/ser-shs_millennium_eng.htm. (Accessed 08/03/2021) Feingersh, T., Ben-Dor, E., & Portugali, J. (2007). Construction of synthetic spectral reflectance of remotely sensed imagery for planning purposes. Environmental Modelling & Software, 22(3), 335–348. https://doi.org/10.1016/j.envsoft.2005.11.005 Feng, Q., Liu, J., & Gong, J. (2015). Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao. China. Water, 7(4), 1437–1455. https://doi.org/10.3390/w7041437 Felzenszwalb, P. F., Girshick, R. B., & McAllester, D. (2010). Cascade object detection with deformable part models. In 2010 IEEE Computer society conference on computer vision and pattern recognition. IEEE. 2241-2248. https://doi.org/10.1109/CVPR.2010.5539906 Ferro, A., Brunner, D., Bruzzone, L., & Lemoine, G. (2011). On the relationship between double bounce and the orientation of buildings in VHR SAR images. IEEE Geoscience and Remote Sensing Letters, 8(4), 612–616. https://doi.org/10.1109/LGRS.2010.2097580 Figueiredo, R., Schröter, K., Weiss-Motz, A., Martina, M. L., & Kreibich, H. (2018). Multi-model ensembles for assessment of flood losses and associated uncertainty. Natural Hazards and Earth System Sciences, 18(5), 1297–1314. https://doi.org/10.5194/nhess-18-1297-2018 Forati, A. M., & Ghose, R. (2021). Examining Community Vulnerabilities through multi-scale geospatial analysis of social media activity during Hurricane Irma. International Journal of Disaster Risk Reduction, 102701. https://doi.org/10.1016/j.ijdrr.2021.102701 Forzieri, G., Cescatti, A., & e Silva, F. B., & Feyen, L. (2017). Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. The Lancet Planetary Health, 1(5), e200–e208. https://doi.org/10.1016/S2542-5196(17)30082-7 Frappart, F., Seyler, F., Martinez, J. M., León, J. G., & Cazenave, A. (2005). Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, 99(4), 387–399. https://doi.org/10.1016/j.rse.2005.08.016 Fu, C. Y., Liu, W., Ranga, A., Tyagi, A., & Berg, A. C. (2017). Dssd: Deconvolutional single shot detector. arXiv preprint. https://arxiv.org/abs/1701.06659. Gandhi, R. (2018). R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms. Towards data science. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e. (Accessed 08/058/2021) Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering, 33(9), 748–768. https://doi.org/10.1111/mice.12363 Gerl, T., Kreibich, H., Franco, G., Marechal, D., & Schröter, K. (2016). A review of flood loss models as basis for harmonization and benchmarking. PloS one, 11(7), e0159791. https://doi.org/10.1371/journal.pone.0159791 Girshick, R., Donahue, J., Darrell, T., & Malik, J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81. Girshick, R. J. C. S. (2015). Fast r-cnn. arXiv 2015. arXiv preprint arXiv:1504.08083. Golparvar, B., & Wang, R. Q. (2021). AI-supported Framework of Semi-Automatic Monoplotting for Monocular Oblique Visual Data Analysis. arXiv preprint. https://arxiv.org/abs/2111.14021 Guo, H., Shi, Q., Marinoni, A., Du, B., & Zhang, L. (2021). Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images. Remote Sensing of Environment, 264, 112589. https://doi.org/10.1016/j.rse.2021.112589 Han, D., Liu, Q., & Fan, W. (2018). A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications, 95, 43–56. https://doi.org/10.1016/j.eswa.2017.11.028 Hao, W., & Zhili, S. (2020). Improved Mosaic: Algorithms for more Complex Images. In Journal of Physics: Conference Series. IOP Publishing. 1684(1), 012094. https://doi.org/10.1088/1742-6596/1684/1/012094. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916. https://doi.org/10.1109/TPAMI.2015.2389824 He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision. 2961–2969. https://doi.org/10.48550/arXiv.1703.06870 Henderson, P., & Ferrari, V. (2017). End-to-end training of object class detectors for mean average precision. In Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20–24, 2016, Revised Selected Papers, Part V 13, 198–213. Springer International Publishing. https://doi.org/10.1007/978-3-319-54193-8_13 Hicks, M., & Burton, M. (2017). Hurricane Harvey: Preliminary estimates of commercial and public sector damages on the Houston metropolitan area. Ball State University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.318.7580&rep=rep1&type=pdf. Hosseiny, H. (2021). A deep learning model for predicting river flood depth and extent. Environmental Modelling & Software, 145, 105186. https://doi.org/10.1016/j.envsoft.2021.105186 Hsu, K. L., Moradkhani, H., & Sorooshian, S. (2009). A sequential Bayesian approach for hydrologic model selection and prediction. Water Resources Research, 45(12). https://doi.org/10.1029/2008WR006824 Hu, R., Zhang, S., Wang, P., Xu, G., Wang, D., & Qian, Y. (2020). The identification of corn leaf diseases based on transfer learning and data augmentation. In Proceedings of the 2020 3rd International Conference on Computer Science and Software Engineering, 58–65. https://doi.org/10.1145/3403746.3403905. Hu, T. Y., Armandpour, M., Shrivastava, A., Chang, J. H. R., Koppula, H., & Tuzel, O. (2021). Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition. arXiv preprint arXiv:2110.11479. https://arxiv.org/abs/2110.11479. Huang, S., Krysanova, V., & Hattermann, F. (2015). Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Regional Environmental Change, 15, 461–473. https://doi.org/10.1007/s10113-014-0606-z Hussain, M., Bird, J. J., & Faria, D. R. (2018). A study on cnn transfer learning for image classification. In UK Workshop on computational Intelligence, Springer, Cham, 191–202. https://doi.org/10.1007/978-3-319-97982-3_16. Islam, R., Lee, Y., Jaloli, M., Muhammad, I., Zhu, D., Rad, P., ... & Quarles, J. (2020). Automatic detection and prediction of cybersickness severity using deep neural networks from user’s physiological signals. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 400–411. https://doi.org/10.1109/ISMAR50242.2020.00066 Javadi, S., Maghami, A., & Hosseini, S. M. (2021). A deep learning approach based on a data-driven tool for classification and prediction of thermoelastic wave’s band structures for phononic crystals. Mechanics of Advanced Materials and Structures, 1–14. https://doi.org/10.1080/15376494.2021.1983088 Jiang, J., Liu, J., Cheng, C., Huang, J., & Xue, A. (2019). Automatic estimation of urban waterlogging depths from video images based on ubiquitous reference objects. Remote Sensing, 11(5), 587. https://doi.org/10.3390/rs11050587 Ju, M., Luo, H., Wang, Z., Hui, B., & Chang, Z. (2019). The application of improved YOLO V3 in multi-scale target detection. Applied Sciences, 9(18), 3775. https://doi.org/10.3390/app9183775 Kamari, M., & Ham, Y. (2021). Vision-based volumetric measurements via deep learning-based point cloud segmentation for material management in jobsites. Automation in Construction, 121, 103430. https://doi.org/10.1016/j.autcon.2020.103430. L. -W. Kang, I. -S. Wang, K. -L. Chou, S. -Y. Chen and C. -Y. Chang (2019). Image-Based Real-Time Fire Detection using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications, 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019, 1–4, https://doi.org/10.1109/AVSS.2019.8909899. Kido, D., Fukuda, T., & Yabuki, N. (2020). Diminished reality system with real-time object detection using deep learning for onsite landscape simulation during redevelopment. Environmental Modelling & Software, 131, 104759. https://doi.org/10.1016/j.envsoft.2020.104759 Kim, J., Han, Y., & Hahn, H. (2011). Embedded implementation of image-based water-level measurement system. IET Computer Vision, 5(2), 125–133. https://doi.org/10.1049/iet-cvi.2009.0144 Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://arxiv.org/abs/1412.6980 Klemas, V. (2015). Remote sensing of floods and flood-prone areas: An overview. Journal of Coastal Research, 31(4), 1005–1013. https://doi.org/10.2112/JCOASTRES-D-14-00160.1 Koirala, A., Walsh, K. B., Wang, Z., & McCarthy, C. (2019). Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO.’ Precision Agriculture, 20(6), 1107–1135. https://doi.org/10.1007/s11119-019-09642-0 Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European Conference on Computer Vision. Springer, Cham. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2117–2125. https://arxiv.org/abs/1612.03144. Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object detection. In Proceedings of The IEEE International Conference on Computer Vision, 2980–2988. https://arxiv.org/abs/1708.02002v2. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In European Conference on Computer Vision. Springer, Cham. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2. Liu S, Qi L, Qin H, Shi J, Jia J. (2018). Path Aggregation Network for Instance Segmentation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit., 8759–68. https://arxiv.org/abs/1803.01534v4. Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., & Hu, G. (2015). Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata. Natural hazards and earth system sciences, 15(3), 381–391. https://doi.org/10.5194/nhess-15-381-2015 Lo, S. W., Wu, J. H., Lin, F. P., & Hsu, C. H. (2015). Visual sensing for urban flood monitoring. Sensors, 15(8), 20006–20029. https://doi.org/10.3390/s150820006 Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145–153. https://doi.org/10.1016/j.rse.2018.02.026 Lyu, Y., Bai, L., & Huang, X. (2019). Road segmentation using cnn and distributed lstm. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE. 1–5. https://doi.org/10.1109/ISCAS.2019.8702174. Ma, J., Duan, S., Zhang, Y., Wang, J., Wang, Z., Li, R., ... & Ma, H. (2020). Efficient deep learning architecture for detection and recognition of thyroid nodules. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/1242781. Mao, X., Chow, J. K., Su, Z., Wang, Y. H., Li, J., Wu, T., & Li, T. (2021). Deep learning-enhanced extraction of drainage networks from digital elevation models. Environmental Modelling & Software, 144, 105135. https://doi.org/10.1016/j.envsoft.2021.105135 Marco, C., Claudio, B., Ueli, R., Thalia, B., & Patrik, K. (2018). Using the Monoplotting technique for documenting and analyzing natural hazard events. In Natural Hazards-Risk Assessment and Vulnerability Reduction. IntechOpen. Merwade, V., Olivera, F., Arabi, M., & Edleman, S. (2008). Uncertainty in flood inundation mapping: Current issues and future directions. Journal of Hydrologic Engineering, 13(7), 608–620. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608) Moy de Vitry, M., Kramer, S., Wegner, J. D., & Leitão, J. P. (2019). Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network. Hydrology and Earth System Sciences, 23(11), 4621–4634. https://doi.org/10.5194/hess-23-4621-2019 Nath, N. D., & Behzadan, A. H. (2020). Deep convolutional networks for construction object detection under different visual conditions. Frontiers in Built Environment, 6, 97. https://doi.org/10.3389/fbuil.2020.00097 National Oceanic and Atmospheric Administration (NOAA) (2022). Radar Operation Center NEXRAD WSR-88D, About the ROC. https://www.roc.noaa.gov/WSR88D/About.aspx Nazari, F., & Yan, W. (2021). Convolutional versus Dense Neural Networks: Comparing the Two Neural Networks Performance in Predicting Building Operational Energy Use Based on the Building Shape. arXiv preprint arXiv:2108.12929. https://arxiv.org/abs/2108.12929 Niu, J., Chen, Y., Yu, X., Li, Z., & Gao, H. (2020). Data Augmentation on Defect Detection of Sanitary Ceramics. In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 5317–5322. IEEE. https://doi.org/10.1109/IECON43393.2020.9254518. Padilla, R., Netto, S. L., & da Silva, E. A. (2020). A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) IEEE. 237–242. https://doi.org/10.1109/IWSSIP48289.2020.9145130. Pally, R. J., & Samadi, S. (2021). Application of image processing and convolutional neural networks for flood image classification and semantic segmentation. Environmental Modelling & Software, 105285. https://doi.org/10.1016/j.envsoft.2021.105285 Park, S., Baek, F., Sohn, J., & Kim, H. (2021). Computer vision–based estimation of flood depth in flooded-vehicle images. Journal of Computing in Civil Engineering, 35(2), 04020072. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000956 Perks, M. T., Russell, A. J., & Large, A. R. (2016). Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrology and Earth System Sciences, 20(10), 4005–4015. https://doi.org/10.5194/hess-20-4005-2016 Pierce, D. A. (1971). Least squares estimation in the regression model with autoregressive-moving average errors. Biometrika, 58(2), 299–312. https://doi.org/10.1093/biomet/58.2.299 Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., & Ferrazzoli, P. (2011). Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sensing of Environment, 115(4), 990–1002. https://doi.org/10.1016/j.rse.2010.12.002 Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint. https://arxiv.org/abs/1804.02767. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788. https://doi.org/10.1109/CVPR.2016.91. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards realtime object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137–1149. https://doi.org/10.1109/tpami.2016.2577031 Robertson, S. (2008). A new interpretation of average precision. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, 689–690. https://doi.org/10.1145/1390334.1390453 Rodriguez Castro, D., Roucour, S., Archambeau, P., Cools, M., Erpicum, S., Habchi, I., ... & Dewals, B. (2022). Modelling direct flood losses: what can we learn from the July 2021 flood in the Meuse basin (Belgium)?. In KAHR Science Conference. https://hdl.handle.net/2268/293640 Romali, N. S., & Yusop, Z. (2021). Flood damage and risk assessment for urban area in Malaysia. Hydrology Research, 52(1), 142–159. https://doi.org/10.2166/nh.2020.121 Sahin, V., & Hall, M. J. (1996). The effects of afforestation and deforestation on water yields. J. Hydrology, 178(1–4), 293–309. https://doi.org/10.1016/0022-1694(95)02825-0 Sakaino, H. (2016). Camera-vision-based water level estimation. IEEE Sensors Journal, 16(21), 7564–7565. https://doi.org/10.1109/JSEN.2016.2603524 Schumann, G. J. P., Neal, J. C., Mason, D. C., & Bates, P. D. (2011). The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sensing of Environment, 115(10), 2536–2546. https://doi.org/10.1016/j.rse.2011.04.039 See, L. (2019). A review of citizen science and crowdsourcing in applications of pluvial flooding. Frontiers in Earth Science, 7, 44. https://doi.org/10.3389/feart.2019.00044 Seyrfar, A., Ataei, H., Movahedi, A., & Derrible, S. (2021). Data-Driven Approach for Evaluating the Energy Efficiency in Multifamily Residential Buildings. Practice Periodical on Structural Design and Construction, 26(2), 04020074. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000555 Shaghaghian, Z., & Yan, W. (2019). Application of Deep Learning in Generating Desired Design Options: Experiments Using Synthetic Training Dataset. arXiv preprint. https://arxiv.org/abs/2001.05849. Shen, X., Anagnostou, E. N., Allen, G. H., Brakenridge, G. R., & Kettner, A. J. (2019). Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sensing of Environment, 221, 302–315. https://doi.org/10.1016/j.rse.2018.11.008 Singh, R. B., & Singh, S. (2011). Rapid urbanization and induced flood risk in Noida. India. Asian Geographer, 28(2), 147–169. https://doi.org/10.1080/10225706.2011.629417 Smith, A. 2021. (2020) U.S. billion-dollar weather and climate disasters in historical context. Beyond the Data. Climate news, stories, images, & video. https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical. (Accessed 08/08/2021) Sokolova, G. V., Verkhoturov, A. L., & Korolev, S. P. (2019). Impact of deforestation on streamflow in the Amur River Basin. Geosciences, 9(6), 262. https://doi.org/10.3390/geosciences9060262 Stone, W. C., Cheok, G., & Lipman, R. (2000). Automated earthmoving status determination. In. Robotics, 2000, 111–119. https://doi.org/10.1061/40476(299)14 Strozzi, T., Teatini, P., & Tosi, L. (2009). TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability. Remote Sensing of Environment, 113(12), 2682–2688. https://doi.org/10.1016/j.rse.2009.08.001 Suriya, S., & Mudgal, B. V. (2012). Impact of urbanization on flooding: The Thirusoolam sub watershed–A case study. Journal of Hydrology, 412, 210–219. https://doi.org/10.1016/j.jhydrol.2011.05.008 Tammina, S. (2019). Transfer learning using vgg-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications (IJSRP), 9(10), 143–150. https://doi.org/10.29322/IJSRP.9.10.2019.p9420. Tan, L. Q., Yunus, N. A., Khu, W. H., & Abd Hamid, M. K. (2021). Quality Prediction of Refined, Bleached and Deodorised Palm Oil using Multiple Least Squares Regression. Chemical Engineering Transactions, 89, 1–6. https://doi.org/10.3303/CET2189001 Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., ... & Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition Workshops, 969–977. https://arxiv.org/abs/1804.06516v3. Turpin, A., and Scholer, F. (2006). User performance versus precision measures for simple search tasks, In 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, WA, 11–18. https://doi.org/10.1145/1148170.1148176. United States Census Bureau (2019). Coastline America, https://www.census.gov/content/dam/Census/library/visualizations/2019/demo/coastline-america.pdf (Accessed 12/19/2021). Van Zandt, S., Peacock, W. G., Henry, D. W., Grover, H., Highfield, W. E., & Brody, S. D. (2012). Mapping social vulnerability to enhance housing and neighborhood resilience. Housing Policy Debate, 22(1), 29–55. https://doi.org/10.1080/10511482.2011.624528 Vojtek, M., Petroselli, A., Vojteková, J., & Asgharinia, S. (2019). Flood inundation mapping in small and ungauged basins: Sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach. Hydrology Research, 50(4), 1002–1019. https://doi.org/10.2166/nh.2019.163 Wada, K. (2016). LabelMe: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme. Wang, R. Q., Mao, H., Wang, Y., Rae, C., & Shaw, W. (2018). Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data. Computers & Geosciences, 111, 139–147. https://doi.org/10.1016/j.cageo.2017.11.008 Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 390–391. https://arxiv.org/abs/1911.11929. Wang, T. (2021). Counting the financial cost of deadly flooding in China’s central city of Zhengzhou. South China Morning Post. https://www.scmp.com/video/scmp-originals/3143124/counting-financial-cost-deadly-flooding-chinas-central-city-zhengzhou. (Accessed 08/08/2021) Ward, P. J., Jongman, B., Kummu, M., Dettinger, M. D., Weiland, F. C. S., & Winsemius, H. C. (2014a). Strong influence of El Niño Southern Oscillation on flood risk around the world. Proceedings of the National Academy of Sciences, 111(44), 15659–15664. https://doi.org/10.1073/pnas.1409822111 Ward, P. J., Van Pelt, S. C., De Keizer, O., Aerts, J. C. J. H., Beersma, J. J., Van den Hurk, B. J. J. M., & Te Linde, A. H. (2014b). Including climate change projections in probabilistic flood risk assessment. Journal of Flood Risk Management, 7(2), 141–151. https://doi.org/10.1111/jfr3.12029 Wedajo, G. K. (2017). LiDAR DEM Data for flood mapping and assessment; opportunities and challenges: A Review. J. Remote Sens. Gis, 6, 2015–2018. https://doi.org/10.4172/2469-4134.1000211 Wing, O. E., Pinter, N., Bates, P. D., & Kousky, C. (2020). New insights into US flood vulnerability revealed from flood insurance big data. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-15264-2 Wing, O. E., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., & Morefield, P. (2018). Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters, 13(3), 034023. https://doi.org/10.1088/1748-9326/aaac65 Winsemius, H. C., Aerts, J. C., Van Beek, L. P., Bierkens, M. F., Bouwman, A., Jongman, B., ... & Ward, P. J. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381–385. https://doi.org/10.1038/nclimate2893 Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An integrated assessment of urban flooding mitigation strategies for robust decision making. Environmental Modelling & Software, 95, 143–155. https://doi.org/10.1016/j.envsoft.2017.06.027 Xu, Z., Wang, S., Stanislawski, L. V., Jiang, Z., Jaroenchai, N., Sainju, A. M., ... & Su, B. (2021). An attention U-Net model for detection of fine-scale hydrologic streamlines. Environmental Modelling & Software, 140, 104992. https://doi.org/10.1016/j.envsoft.2021.104992 Zhan, C., Ghaderibaneh, M., Sahu P., & Gupta, H. (2021). DeepMTL: Deep Learning Based Multiple Transmitter Localization, 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 41–50, https://doi.org/10.1109/WoWMoM51794.2021.00017. Zhou, Y., Wu, W., Nathan, R., & Wang, Q. J. (2021). A rapid flood inundation modelling framework using deep learning with spatial reduction and reconstruction. Environmental Modelling & Software, 105112. https://doi.org/10.1016/j.envsoft.2021.105112 Zhu, L., Xie, Z., Liu, L., Tao, B., & Tao, W. (2021). Iou-uniform r-cnn: Breaking through the limitations of rpn. Pattern Recognition, 112, 107816. https://doi.org/10.1016/j.patcog.2021.107816.