Scalable Semi-Supervised Learning by Efficient Anchor Graph Regularization

IEEE Transactions on Knowledge and Data Engineering - Tập 28 Số 7 - Trang 1864-1877 - 2016
Meng Wang1, Weijie Fu1, Shijie Hao1, Dacheng Tao2, Xindong Wu3,4
1School of Computer and Information Science, Hefei University of Technology, Hefei, China
2Centre for Quantum Computation & Intelligent Systems, University of Technology, Ultimo, NSW, Australia
3Department of Computer Science, University of Vermont, Burlington, VT, USA
4School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/CVPR.2010.5540018

10.1109/CVPR.2012.6247790

10.1137/1.9781611972825.74

10.1109/TMM.2013.2271746

10.1126/science.290.5500.2323

10.1109/TKDE.2007.190646

10.1109/TKDE.2007.190672

10.1145/2623330.2623731

10.1109/ICTAI.2005.17

10.1007/s10115-013-0706-y

nesterov, 2004, Introductory Lectures on Convex Optimization, 87, 10.1007/978-1-4419-8853-9

mohar, 1991, The laplacian spectrum of graphs, Graph Theory Combinatorics Appl, 2, 871

10.1109/TPAMI.2013.231

10.1023/B:MACH.0000033120.25363.1e

10.1109/CVPR.1997.609451

10.1007/s10115-013-0715-x

10.1109/JPROC.2012.2197809

liu, 0, Large graph construction for scalable semi-supervised learning, Proc 27th Int Conf Mach Learning, 679

10.1145/1878137.1878142

liu, 0, Hashing with graphs, Proc 28th Int Conf Mach Learning, 1

melacci, 2011, Laplacian support vector machines trained in the primal, J Mach Learning Res, 12, 1149

10.1007/s10115-014-0810-7

10.1145/2647868.2655035

zhou, 0, Learning with local and global consistency, Proc Conf Adv Neural Inform Process Syst, 16, 321

10.2200/S00196ED1V01Y200906AIM006

zhu, 0, Semi-supervised learning using Gaussian fields and harmonic functions, Proc 20th Int Conf Mach Learning, 3, 912

10.1109/TKDE.2005.186

10.1109/TKDE.2007.190644

elkan, 0, Using the triangle inequality to accelerate k-means, Proc 20th Int Conf Mach Learning, 3, 147

fergus, 0, Semi-supervised learning in gigantic image collections, Proc Conf Adv Neural Inform Process Syst, 522

10.1109/TCSVT.2009.2017400

10.1142/S0218001414500013

10.1109/CVPR.2015.7299066

10.1109/CVPR.2010.5540120

10.1007/978-3-540-87479-9_48

10.1016/j.neucom.2014.08.035

jaakkola, 0, Partially labeled classification with Markov random walks, Proc Conf Adv Neural Inform Process Syst, 14, 945

joachims, 0, Transductive inference for text classification using support vector machines, Proc 16th Int Conf Mach Learning, 200

10.1109/ICASSP.2013.6638233

10.1145/279943.279962

bishop, 2006, Pattern Recognition and Machine Learning

10.1016/0167-8655(94)00074-D

cai, 2015, Large scale spectral clustering with landmark-based representation, IEEE Trans Cybern, 45, 1669, 10.1109/TCYB.2014.2358564

10.1109/ICCV.2013.323

10.1016/j.cviu.2014.04.001

10.1109/TIP.2015.2502147

10.1109/TMM.2014.2298841

zelnik-manor, 0, Self-tuning spectral clustering, Proc Conf Adv Neural Inform Process Syst, 1601

10.1007/s10115-013-0702-2

10.1109/TNNLS.2014.2315526

10.1145/1553374.1553531

10.1109/ICCV.2013.78

10.1109/TIP.2015.2405479

yang, 0, Clustering by low-rank doubly stochastic matrix decomposition, Proc 29th Int Conf Mach Learn, 831

10.1109/TKDE.2013.70