Scalable Production of Monolayer Shell(Pt)@Core(Pd) Nanoparticles by Electroless Cu UPD for Oxygen Reduction Reaction

Electrocatalysis - Tập 12 - Trang 127-136 - 2021
Ijjada Mahesh1,2, Arindam Sarkar1
1Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
2Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, USA

Tóm tắt

In this article, we discuss an electroless under potential deposition (UPD) method to synthesize core@shell monolayer nanoparticles in bulk quantities. In this electroless UPD method, potential is controlled and maintained in the UPD region by a redox couple. This electroless path enables the production of core@shell monolayer catalysts on any type of support, unlike the conventional UPD, where potential is controlled by an external power source which allows for the deposition only on conductive supports such as carbon. This was demonstrated by synthesizing Pt(shell)@Pd(core) nanopartricles on both conductive (Vulcan carbon) and non-conductive (alumina) supports by Cu UPD-galvanic replacement method. Core-shell structure of the Pd-Pt nanoparticles was confirmed by STEM characterization. The thickness of Pt shell in Pt@Pd nanoparticles was examined by analytical and experimental observations. Furthermore, catalytic activity of Pt@Pd/C nanoparticles, synthesized by the electroless Cu UPD-galvanic replacement method, was examined for oxygen reduction reaction.

Tài liệu tham khảo

R.R. Adzic, Platinum monolayer electrocatalysts: tunable activity, stability, and self-healing properties. Electrocatalysis 3(3-4), 163–169 (2012). https://doi.org/10.1007/s12678-012-0112-3 D. Takimoto, T. Ohnishi, J. Nutariya, Z. Shen, Y. Ayato, D. Mochizuki, A. Demortière, A. Boulineau, W. Sugimoto, Ru-core@Pt-shell nanosheet for fuel cell electrocatalysts with high activity and durability. J. Catal. 345, 207–215 (2017). https://doi.org/10.1016/j.jcat.2016.11.026 S.H. Ahn, Y. Liu, T.P. Moffat, Ultrathin platinum films for methanol and formic acid oxidation: activity as a function of film thickness and coverage. ACS Catal. 5(4), 2124–2136 (2015). https://doi.org/10.1021/cs501228j I. Mahesh, A. Sarkar, Self-restraining electroless deposition for shell@core particles and influence of lattice parameter on the ORR activity of Pt(shell)@Pd(core)/C electrocatalyst. J. Phys. Chem. C 122(17), 9283–9291 (2018). https://doi.org/10.1021/acs.jpcc.7b12353 R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top.Catal. 46(3-4), 249–262 (2007). https://doi.org/10.1007/s11244-007-9003-x A. Peles, M. Shao, L. Protsailo, Pt monolayer electrocatalyst for oxygen reduction reaction on Pd-Cu alloy: first-principles investigation. Catalysts 5(3), 1193–1201 (2015). https://doi.org/10.3390/catal5031193 P.C. Jennings, H.A. Aleksandrov, K.M. Neyman, R.L. Johnston, O2 Dissociation on M@Pt core-shell particles for 3d, 4d, and 5d Transition Metals. J. Phys. Chem. C 119(20), 11031–11041 (2015). https://doi.org/10.1021/jp511598e K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, R.R. Adzic, Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochem. Acta 55(8), 2645–2652 (2010). https://doi.org/10.1016/j.electacta.2009.11.106 F. Taufany, C.J. Pan, J. Rick, H.L. Chou, M.C. Tsai, B.J. Hwang, D.G. Liu, J.F. Lee, M.T. Tang, Y.C. Lee, C.I. Chen, Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core–shell structured nanoparticles. ACS Nano 5(12), 9370–9381 (2011). https://doi.org/10.1021/nn202545a Y.C. Hsieh, Y. Zhang, D. Su, V. Volkov, R. Si, L. Wu, Y. Zhu, W. An, P. Liu, P. He, S. Ye, R.R. Adzic, J.X. Wang, Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 4(1), 2466–2475 (2013). https://doi.org/10.1038/ncomms3466 S. Ambrozik, N. Dimitrov, The deposition of Pt via electroless surface limited redox replacement. Electrochem. Acta 169, 248–255 (2015). https://doi.org/10.1016/j.electacta.2015.04.043 K. Venkatraman, R. Gusley, L. Yu, Y. Dordi, R. Akolkar, Electrochemical atomic layer deposition of copper: a lead-free process mediated by surface-limited redox replacement of underpotentially deposited zinc. J. Electrochem. Soc. 163(12), D3008–D3013 (2016). https://doi.org/10.1149/2.0021612jes I. Mahesh, A. Sarkar, Electrochemical study of oxygen reduction on a carbon-supported core-shell platinum-gold electrocatalyst with tuneable gold surface composition. ChemElectroChem 3(5), 836–845 (2016). https://doi.org/10.1002/celc.201500452 N. Furuya, S. Koide, Hydrogen adsorption on platinum single-crystal surfaces. Surf. Sci. 220(1), 18–28 (1989). https://doi.org/10.1016/0039-6028(89)90460-3 K. Yamamoto, D.M. Kolb, R. Kotz, G. Lehmpfuhl, Hydrogen adsorption and oxide formation on platinum single crystal electrodes. J. Electroanal. Chem. 96(2), 233–239 (1979). https://doi.org/10.1016/S0022-0728(79)80380-0 E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101(7), 1897–1930 (2001). https://doi.org/10.1021/cr9600363 N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110(25), 12480–12484 (2006). https://doi.org/10.1021/jp0608372 M. Lopez-Atalaya, E. Morallon, F. Cases, J.L. Vazquez, J.M. Perez, Electrochemical oxidation of ethanol on Pt(hkl) basal surfaces in NaOH and Na2CO3 media. J. Power Sources 52(1), 109–117 (1994). https://doi.org/10.1016/0378-7753(94)01950-9 S.C.S. Lai, M.T.M. Koper, Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009). https://doi.org/10.1039/B913170A C. Buso-Rogero, E. Herrero, J.M. Feliu, Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium. ChemPhysChem 15(10), 2019–2028 (2014). https://doi.org/10.1002/cphc.201402044 S. Ambrozik, B. Rawlings, N. Vasiljevic, N. Dimitrov, Metal deposition via electroless surface limited redox replacement. Electrochem. Commun. 44, 19–22 (2014). https://doi.org/10.1016/j.elecom.2014.04.005 P.J. Cappillino, J.D. Sugar, F.E. Gabaly, T.Y. Cai, Z. Liu, J.L. Stickney, D.B. Robinson, atomic-layer electroless deposition: a scalable approach to surface-modified metal powders. Langmuir 30(16), 4820–4829 (2014). https://doi.org/10.1021/la500477s T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, X. Sun, F. Yin, Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(31), 17162–17170 (2015). https://doi.org/10.1021/acsami.5b04021 M. Inaba, H. Daimon, Development of highly active and durable platinum core-shell catalysts for polymer electrolyte fuel cells. J. Jpn. Petrol. Inst. 58(2), 55–63 (2015). https://doi.org/10.1627/jpi.58.55 D. Wu, D.J. Solanki, J.L. Ramirez, W. Yang, A. Joi, Y. Dordi, N. Dole, S.R. Brankovic, Electroless deposition of Pb monolayer: a new process and application to surface selective atomic layer deposition. Langmuir 34(38), 11384–11394 (2018). https://doi.org/10.1021/acs.langmuir.8b02272 I. Mahesh, A. Sarkar, Scale-up process of core@shell monolayer catalyst without active potential control through electroless underpotential deposition galvanic replacement. ChemistrySelect 3(41), 11622–11626 (2018). https://doi.org/10.1002/slct.201801616 C.M.A. Brett, A.M.O. Brett, Electrochemistry principles, methods, and applications (Oxford University Press, Oxford, 1993), p. 156 T. Akbiyik, I. Sonmezoglu, K. Guclu, I. Tor, R. Apak, Protection of ascorbic acid from copper(II)−catalyzed oxidative degradation in the presence of fruit acids: citric, oxalic, tartaric, malic, malonic, and fumaric acids. Int. J. Food Prop. 15(2), 398–411 (2012). https://doi.org/10.1080/10942912.2010.487630 A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 3(2), e1600542 (2017). https://doi.org/10.1126/sciadv.1600542 T.-H. Phan, R.E. Schaak, Polyol synthesis of palladium hydride: bulk powders vs. nanocrystals. Chem. Commun. 0(21), 3026–3028 (2009). https://doi.org/10.1039/B902024A A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31(5), 1605–1609 (2015). https://doi.org/10.1021/la5025229 K. Jagannathan, D.M. Benson, D.B. Robinson, J.L. Stickney, Hydrogen sorption kinetics on bare and platinum-modified palladium nanofilms, grown by electrochemical atomic layer deposition (E-ALD). J. Electrochem. Soc. 163(12), D3047–D3052 (2016). https://doi.org/10.1149/2.0051612jes C. Sarici-Ozdemir, Y. Onal, Statistical analysis of equilibrium and kinetic data for ascorbic acid removal from aqueous solution by activated carbon. Desalin. Water Treat. 51(22-24), 4658–4665 (2013). https://doi.org/10.1080/19443994.2013.769664 C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83–94 (2004). https://doi.org/10.1016/j.carbon.2003.09.022 Y. Cai, C. Ma, Y. Zhu, J.X. Wang, R.R. Adzic, Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. Langmuir 27(13), 8540–8547 (2011). https://doi.org/10.1021/la200753z L. Wang, A. Roudgar, M. Eikerling, Ab initio study of stability and site-specific oxygen adsorption energies of pt nanoparticles. J. Phys. Chem. C 113(42), 17989–17996 (2009). https://doi.org/10.1021/jp900965q Y. Zhang, Y.-C. Hsieh, V. Volkov, D. Su, W. An, R. Si, Y. Zhu, P. Liu, J.X. Wang, R.R. Adzic, High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. ACS Catal. 4(3), 738–742 (2014). https://doi.org/10.1021/cs401091u