Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes

Fabio B. Passos1, B. S. Marimon2, Oliver L. Phillips3, P. S. Morandi1, EC das Neves2, Fernando Elias2, SM Reis2, Beatriz Fátima Alves de Oliveira2, Ted R. Feldpausch4, BH Marimon Júnior2
1Programa de Pós-graduação em Biodiversidade e Biotecnologia, Rede BIONORTE, Campus de Nova Xavantina, MT, 78690-000, Brazil
2Universidade do Estado de Mato Grosso – UNEMAT, Campus de Nova Xavantina, MT, 78690-000, Brazil
3School of Geography, University of Leeds, Leeds, UK
4College of Life and Environmental Sciences, University of Exeter, Exeter, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284

Ackerly DD, Thomas WW, Cid Ferreira C, Pirani JR (1989) The Forest-Cerrado Transition Zone in Southern Amazonia: results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia 41:113–128

Baker TR, Pennington RT, Magallon S et al (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536. https://doi.org/10.1111/ele.12252

Baptiste Auguie (2016) gridExtra: miscellaneous functions for “grid” graphics. R package version 2.2.1

Bonini I, Rodrigues C, Dallacort R et al (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteorol 29:483–493. https://doi.org/10.1590/0102-778620130665

Bonini I, Marimon-Junior BH, Matricardi E, Phillips O et al (2018) Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For Ecol Manag 414:64–73

Brando PM, Balch JK, Nepstad DC et al (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA 111:6347–6352. https://doi.org/10.1073/pnas.1305499111

Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. https://doi.org/10.1038/nature14283

Castanho ADA, Galbraith D, Zhang K et al (2016) Changing Amazon biomass and the role of atmospheric CO2 concentration, climate and land use. Glob Biogeochem Cycles 30:18–39. https://doi.org/10.1002/2015GB005135

Cole MM (1992) Influence of physical factors on the nature and dynamics of forest-savanna boundaries. In: Ratter JA, Proctor J, Furley PA (eds) Nature and dynamics of forest-savanna boundaries1, 1o edn. Chapman & Hall, London, pp 63–76

Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. https://doi.org/10.1086/283241

Costa ACL, Galbraith D, Portela BTT et al (2010) Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest. New Phytol 12:579–591. https://doi.org/10.1111/j.1469-8137.2010.03309.x

Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119. https://doi.org/10.1017/S0960428606000357

Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15. https://doi.org/10.1111/1365-2664.12559

Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123. https://doi.org/10.1590/S0044-59672006000300018

Feldpausch TR, Phillips OL, Brienen RJW et al (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982. https://doi.org/10.1002/2015GB005133

Geiger EL, Gotsch SG, Damasco G et al (2011) Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22:312–321. https://doi.org/10.1111/j.1654-1103.2011.01252.x

Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. https://doi.org/10.1002/grl.50377

Guimarães JCC, Van Den Berg E, Castro GC et al (2008) Dinâmica do componente arbustivo-arbóreo de uma floresta de galeria aluvial no planalto de Poços de Caldas, MG, Brasil. Rev Bras Bot 31:621–632. https://doi.org/10.1590/S0100-84042008000400008

Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics in the cerrado of central Brazil. In: McClain ME, Victoria RL, Richey JE (eds) Biogeochemistry of the amazon basin and its role in a changing world. Oxford University Press, New York, pp 68–83

Henriques RP (2005) Influência da história, solo e fogo na distribuição e dinâmica das fitofisionomias no bioma do Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasilia, DF, pp 73–92

Henriques RP, Hay JD (2002) Patterns and dynamics of plant populations. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 140–158

Hoffmann WA, Moreira AG (2002) The role of fire in population dynamics of woody plants. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 159–177

Kerbauy GB (2012) Fisiologia vegetal. Guanabara Koogan, Rio de Janeiro

Kershaw AP (1992) The development of rainforest-savanna boundaries in tropical Australia. In: Furley PA, Proctor P, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 10th edn. Chapman & Hall, London, pp 255–272

Khavhagali P, Bond WJ (2008) Increase of woody plants in savannah ecosystems. Grassroots Newsl Grassl Soc South Africa 8:21–24

Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155

Lewis S, Phillips OL, Baker TR et al (2004) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos Trans R Soc Lond Ser B Biol Sci 359:421–436. https://doi.org/10.1098/rstb.2003.1431

Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46. https://doi.org/10.3354/cr00797

Marengo JA, Alves LM, Soares W et al (2013) Two contrasting severe seasonal extremes in Tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26:9137–9154

Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926. https://doi.org/10.1590/S0102-33062005000400026

Marimon BS, Lima E, Duarte T et al (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest Ecotone. Edinb J Bot 63:323–341. https://doi.org/10.1017/S0960428606000576

Marimon BS, Felfili JM, Lima ES et al (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118. https://doi.org/10.1590/S0044-59672010000100014

Marimon BS, Marimon Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in Southern Amazonia. Plant Ecol Divers 7:281–292. https://doi.org/10.1080/17550874.2013.818072

Mayle FE (2000) Millennial-scale dynamics of Southern Amazonian rain forests. Science 290:2291–2294. https://doi.org/10.1126/science.290.5500.2291

Mendonça RC, Felfili JM, Walter BM et al (2008) Flora vascular do Bioma Cerrado: checklist com 12356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia, biodiversidade e conservação, 2a. Embrapa Informação Tecnológica, Brasilia, DF, pp 417–1279

Mews HA, Marimon BS, Maracahipes L et al (2011) Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop 11:73–82

Miranda HS, Bustamante MM, Miranda AC (2002) The Fire Factor. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68

Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG (2014) Regional variations in biomass distribution in Brazilian Savanna Woodland. Biotropica 46:125–138. https://doi.org/10.1111/btp.12095

Morandi PS, Marimon-Junior BH, Oliveira EA et al (2015) Vegetation succession in the Cerrado-Amazonia forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:1–11. https://doi.org/10.1017/S096042861500027X

Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029

Nogueira EM, Nelson BW, Fearnside PM et al (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manag 255:2963–2972. https://doi.org/10.1016/j.foreco.2008.02.002

Oksanen J, Blanchet FG, Friendly M et al (2016) vegan: community ecology package. R package version 2.4-0

Oliveira B, Marimon Junior BH, Mews HA et al (2016) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239. https://doi.org/10.1007/s11258-016-0681-y

Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141. https://doi.org/10.1017/S0960428600000949

Passos FB, Lopes CM, Aquino FG, Ribeiro JF (2014) Nurse plant effect of Solanum lycocarpum A. St.-Hil. in area of Brazilian Savanna undergoing a process of restoration. Braz J Bot 37:251–259. https://doi.org/10.1007/s40415-014-0079-9

Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol 22:3373–3382. https://doi.org/10.1111/gcb.13259

Peltzer DA, Wardle DA, Allison VJ et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. https://doi.org/10.1890/09-1552.1

Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958. https://doi.org/10.1126/science.263.5149.954

Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

Phillips OL, Higuchi N, Vieira S et al (2009) Changes in Amazonian forest biomass, dynamics and composition, 1980–2002. In: Bustamante MKM, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, D. C., pp 373–387

Phillips OL, Baker TR, Brienen R, Feldpausch TR (2010) Field manual for plot establishment and remeasurement. http://www.geog.leeds.ac.uk/projects/rainfor

Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703

Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Procter J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 1a. Chapman & Hall, London, pp 417–429

Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of Northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Philos Trans R Soc B Biol Sci 266:449–492. https://doi.org/10.1098/rstb.1973.0053

Ribeiro JF, Walter BM (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasilia - DF, pp 151–212

R Core Team (2016) R: a language and environment for statistical computing, reference index version 1.0.136. R Foundation for statistical computing, Vienna, Austria

Scolforo JRS, Rufini AL, Mello JM et al (2008) Equações para o peso de matéria seca das fisionomias, em Minas Gerais. In: Scolforo JR, Oliveira AD, Acerbi Júnior FW (eds) Inventário Florestal de Minas Gerais - Equações de Volume, Peso de Matéria Seca e Carbono para Diferentes Fisionomias da Flora Nativa2. UFLA, Lavras, pp 103–114

Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333

Sheil D, Jennings S, Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan Rain Forest. J Trop Ecol 16:765–800

Silva LCR, Hoffmann WA, Rossatto DR et al (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. https://doi.org/10.1007/s11104-013-1822-x

Veenendaal EM, Torello-Raventos M, Feldpausch TR et al (2015) Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents—how different are co-occurring savanna and forest formations? Biogeosciences 12:2927–2951

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

Vidotto E, Pessenda LCR, Ribeiro ADS et al (2007) Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amaz 37:385–400

Whittaker RH (1953) A Consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78. https://doi.org/10.2307/1943519

Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428. https://doi.org/10.2307/2258988

Zar JH (2010) Biostatistical analysis, 5o edn. Prentice-Hall, Englewood Cliffs, NJ