Saturation problems in convex geometric hypergraphs
Tài liệu tham khảo
Aranov, 2019, More turán-type theorems for triangles in convex point sets, Electron. J. Combin., 26
Barrus, 2017, Colored saturation parameters for rainbow subgraphs, J. Graph Theory, 86, 375, 10.1002/jgt.22132
Bollobás, 1965, On generalized graphs, Acta Math. Acad. Sci. Hungar, 16, 447, 10.1007/BF01904851
Braß, 2004, Turán-type extremal problems for convex geometric hypergraphs, vol. 342, 25
Capoyleas, 1992, A turán-type theorem for chords of a convex polygon, J. Combin. Theory Ser. B, 56, 9, 10.1016/0095-8956(92)90003-G
Damásdi, 2020
S. English, private communication.
Erdős, 1964, A problem in graph theory, Amer. Math. Monthly, 71, 1107, 10.2307/2311408
Erdős, 1961, Intersection theorems for systems of finite sets, Q. J. Math., 12, 313, 10.1093/qmath/12.1.313
J. Faudree, R. Faudree, J. Schmitt, A Survey of Minimum Saturated Graphs, Electron. J. Combin. 18, 2011.
Ferrara, 2020, On edge–colored saturation problems, J. Comb., 11, 639
Frankl, 2021, Intersection theorems for triangles, Discrete Comput. Geom.
Füredi, 1980, On maximal intersecting families of finite sets, J. Combin. Theory Ser. A, 28, 10.1016/0097-3165(80)90071-0
Füredi, 2020, Extremal problems on ordered and convex geometric hypergraphs, Canad. J. Math., 1
Füredi, 2020, Ordered and convex geometric trees with linear extremal function, Discrete Comput. Geom., 64, 324, 10.1007/s00454-019-00149-z
Füredi, 2020, Tight paths in convex geometric hypergraphs, Adv. Comb.
Füredi, 2022, Extremal problems for pairs of triangles, J. Combin. Theory Ser. B, 155, 83, 10.1016/j.jctb.2022.02.003
Girão, 2020, Rainbow saturation of graphs, J. Graph Theory, 94, 421, 10.1002/jgt.22532
Hopf, 1934, Aufgabe nr. 167, Jahresber. Dtsch. Math.-Ver., 43, 114
Keller, 2016, On convex geometric graphs with no k+1 pairwise disjoint edges, Graphs Combin., 32, 2497, 10.1007/s00373-016-1719-6
Korándi, 2018, Rainbow saturation and graph capacities, SIAM J. Discrete Math., 32, 1261, 10.1137/17M1155429
Kupitz, 1984, On pairs of disjoint segments in convex position in the plane, Ann. Discret. Math., 20, 203
Kupitz, 1996, Extremal theory for convex matchings in convex geometric graphs, Discrete Comput. Geom., 15, 195, 10.1007/BF02717731
Pach, 1999, Geometric graph theory, vol. 267, 167
Pach, 2013, The beginnings of geometric graph theory, Erdős centennial, Bolyai Soc. Math. Stud., 25, 465, 10.1007/978-3-642-39286-3_17
Pikhurko, 1999, On the minimum size of saturated hypergraphs, Combin. Probab. Comput., 8, 483, 10.1017/S0963548399003971
G. Tardos, Extremal theory of ordered graphs, in: Proceedings of the International Congress of Mathematics – 2018, Vol. 3, 2018, pp. 3219–3228.