Saturation problems in convex geometric hypergraphs

European Journal of Combinatorics - Tập 110 - Trang 103702 - 2023
Jason O’Neill1, Sam Spiro2
1Department of Mathematics, California State University, Los Angeles, 5151 State University Dr. Los Angeles, CA 90032, USA
2Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA

Tài liệu tham khảo

Aranov, 2019, More turán-type theorems for triangles in convex point sets, Electron. J. Combin., 26 Barrus, 2017, Colored saturation parameters for rainbow subgraphs, J. Graph Theory, 86, 375, 10.1002/jgt.22132 Bollobás, 1965, On generalized graphs, Acta Math. Acad. Sci. Hungar, 16, 447, 10.1007/BF01904851 Braß, 2004, Turán-type extremal problems for convex geometric hypergraphs, vol. 342, 25 Capoyleas, 1992, A turán-type theorem for chords of a convex polygon, J. Combin. Theory Ser. B, 56, 9, 10.1016/0095-8956(92)90003-G Damásdi, 2020 S. English, private communication. Erdős, 1964, A problem in graph theory, Amer. Math. Monthly, 71, 1107, 10.2307/2311408 Erdős, 1961, Intersection theorems for systems of finite sets, Q. J. Math., 12, 313, 10.1093/qmath/12.1.313 J. Faudree, R. Faudree, J. Schmitt, A Survey of Minimum Saturated Graphs, Electron. J. Combin. 18, 2011. Ferrara, 2020, On edge–colored saturation problems, J. Comb., 11, 639 Frankl, 2021, Intersection theorems for triangles, Discrete Comput. Geom. Füredi, 1980, On maximal intersecting families of finite sets, J. Combin. Theory Ser. A, 28, 10.1016/0097-3165(80)90071-0 Füredi, 2020, Extremal problems on ordered and convex geometric hypergraphs, Canad. J. Math., 1 Füredi, 2020, Ordered and convex geometric trees with linear extremal function, Discrete Comput. Geom., 64, 324, 10.1007/s00454-019-00149-z Füredi, 2020, Tight paths in convex geometric hypergraphs, Adv. Comb. Füredi, 2022, Extremal problems for pairs of triangles, J. Combin. Theory Ser. B, 155, 83, 10.1016/j.jctb.2022.02.003 Girão, 2020, Rainbow saturation of graphs, J. Graph Theory, 94, 421, 10.1002/jgt.22532 Hopf, 1934, Aufgabe nr. 167, Jahresber. Dtsch. Math.-Ver., 43, 114 Keller, 2016, On convex geometric graphs with no k+1 pairwise disjoint edges, Graphs Combin., 32, 2497, 10.1007/s00373-016-1719-6 Korándi, 2018, Rainbow saturation and graph capacities, SIAM J. Discrete Math., 32, 1261, 10.1137/17M1155429 Kupitz, 1984, On pairs of disjoint segments in convex position in the plane, Ann. Discret. Math., 20, 203 Kupitz, 1996, Extremal theory for convex matchings in convex geometric graphs, Discrete Comput. Geom., 15, 195, 10.1007/BF02717731 Pach, 1999, Geometric graph theory, vol. 267, 167 Pach, 2013, The beginnings of geometric graph theory, Erdős centennial, Bolyai Soc. Math. Stud., 25, 465, 10.1007/978-3-642-39286-3_17 Pikhurko, 1999, On the minimum size of saturated hypergraphs, Combin. Probab. Comput., 8, 483, 10.1017/S0963548399003971 G. Tardos, Extremal theory of ordered graphs, in: Proceedings of the International Congress of Mathematics – 2018, Vol. 3, 2018, pp. 3219–3228.