Saturation and Polarization Characteristics of 1.56 μm Optical Probe Pulses in a LTG-GaAs Photoconductive Antenna Terahertz Detector

Elmer S. Estacio1,2, Masakazu Hibi1, Katsuya Saito1, Christopher T. Que1,3, Takashi Furuya4, Fumiaki Miyamaru5, Seizi Nishizawa6, Kohji Yamamoto4, Masahiko Tani4
1Research Center for Development of Far-Infrared Region, University of Fukui, Fukui, Japan
2National Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines
3Physics Department, De La Salle University, Manila, Philippines
4Research Center for Development of Far-Infrared Region, University of Fukui, Fukui, JAPAN,
5Department of Physics, Faculty of Science, Shinshu University, Matsumoto, Japan
6Advanced Infrared Spectroscopy Co., Ltd, Hachioji, Japan

Tóm tắt

The characteristics of low temperature-grown GaAs photoconductive antenna (PCA) terahertz detectors probed by 1.56 μm laser pulses are investigated. The influence of TM and TE polarized probe, as well as the saturation characteristics are studied for 2 μm- and 5 μm-gap PCA’s. Different polarization characteristics at low probe powers and at the saturation regimes were observed. Results are explained in terms of the polarization-dependent photocarrier distribution at the PCA gap arising from tight focusing. This work also demonstrates using a 1.56 μm probe for a GaAs PCA to achieve ~60 dB SNR; matching its performance characteristics for above-bandgap probes.

Tài liệu tham khảo

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, Chem. Phys. Lett., 332, 389–395 (2000). M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, Opt. Express, 13, 115–120 (2005). M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, App. Phys. Lett., 80, 154–156 (2002). K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express, 11, 2549–2554 (2003). J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209–223 (2007). L. Ho, R. Muller, M. Romer, K.C. Gordon, P. Kleinebudde, M. Pepper, T. Rades, Y.C. Shen, P.F. Taday, J.A. Zeitler, J. Controlled Release 127, 79–87 (2008). N. Sekine, K. Hirakawa, F. Sogawa, Y. Arakawa, N. Usami, Y. Shiraki, and T. Katoda, Appl. Phys. Lett. 68, 3419–3421 (1996). M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 163504 (2005). M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005). M. Tani, K-S Lee, and X.-C. Zhang, Appl. Phys. Lett. 77, 1396–1398 (2000). T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett. 97, 201110 (2010). B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell Opt. Express 16, 9565–9570 (2008). A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 90, 101119 (2007). J. Mangeney, and P. Crozat, C. R. Physique 9, 142–152 (2008). N. Chimot, J. Mangeney, L. Joulaud, P. Crozat H. Bernas, K. Blary and J. F. Lampin, Appl. Phys. Lett. 87, 193510 (2005). A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91,011102 (2007). F. Miyamaru, Yu Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Appl. Phys. Lett. 96, 211104 (2010). P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, Appl. Phys. Lett. 72, 2069–2071 (1998). W. G. Heitman and P. M. van den Berg, Can. J. Phys. 53, 1305–1317 (1975). J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1–87 (2007).