Satellite laser ranging to GPS and GLONASS
Tóm tắt
Satellite laser ranging (SLR) to the satellites of the global navigation satellite systems (GNSS) provides substantial and valuable information about the accuracy and quality of GNSS orbits and allows for the SLR-GNSS co-location in space. In the framework of the NAVSTAR-SLR experiment two GPS satellites of Block-IIA were equipped with laser retroreflector arrays (LRAs), whereas all satellites of the GLONASS system are equipped with LRAs in an operational mode. We summarize the outcome of the NAVSTAR-SLR experiment by processing 20 years of SLR observations to GPS and 12 years of SLR observations to GLONASS satellites using the reprocessed microwave orbits provided by the center for orbit determination in Europe (CODE). The dependency of the SLR residuals on the size, shape, and number of corner cubes in LRAs is studied. We show that the mean SLR residuals and the RMS of residuals depend on the coating of the LRAs and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including the single-photon and multi-photon detection modes. We also show that the SLR observations to GNSS satellites are important to validate GNSS orbits and to assess deficiencies in the solar radiation pressure models. We found that the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors, causes the variations of mean SLR residuals of up to 15 mm between the observations at nadir angles of 0
$$^{\circ }$$
and 14
$$^{\circ }$$
. in case of multi-photon SLR stations. For single-photon SLR stations this effect does not exceed 1 mm. When using the new empirical CODE orbit model (ECOM), the SLR mean residual falls into the range 0.1–1.8 mm for high-performing single-photon SLR stations observing GLONASS-M satellites with uncoated corner cubes. For best-performing multi-photon stations the mean SLR residuals are between
$$-12.2$$
and
$$-25.6$$
mm due to the satellite signature effect.
Tài liệu tham khảo
Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4
Appleby G, Otsubo T, Sinclair AT (1999) Comparison of precise SLR orbits of the GLONASS satellites with microwave orbits. In: Proceedings of IGEX-98 workshop, pp 247–257
Appleby G (1996) Satellite laser ranging and the Etalon geodetic satellite. Ph.D. Thesis, The University of Aston in Birmingham, UK
Appleby G (2013) Modern SLR Systems—impact from multi-constellation tracking. Herstmonceux example. GGOS—RAS/ROSCOSMOS Meeting, TUV, Austria
Arnold D, Dach R, Beutler G, Schaer S, Meindl M, Lutz S, Sośnica K, Jäggi A (2014) Impact of GNSS orbit modelling on reference frame parameters. IAG Commission 1 symposium 2014: reference frames for applications in geosciences REFAG2014, Luxembourg. http://www.bernese.unibe.ch/publist/2014/pres/DA_LUX
Arnold D, Meindl M, Beutler G, Schaer S, Dach R, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new empirical orbit model for the international GNSS service. J Geod (submitted manuscript)
Beard RL (2014) The NAVSTAR 35 and 36 laser retro-reflector experiments. In: Proceedings from the 19th international workshop on laser ranging, Annapolis, US, October 27–31, 2014
Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384
Dach R, Hugentobler U, Meindl M, Fridez P (eds) (2007) The Bernese GPS software version 5.0. Astronomical Institute, University of Bern
Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3
Flohrer C (2008) Mutual validation of satellite-geodetic techniques and its impact on GNSS orbit modeling. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 75. ISBN: 978-3-908440-19-2
Fritsche M, Sośnica K, Rodriguez-Solano C, Steigenberger P, Dietrich R, Dach R, Wang K, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS, GLONASS and SLR observations. J Geod 88(7):625–642. doi:10.1007/s00190-014-0710-3
Gurtner W, Noomen R, Pearlman M (2005) The international laser ranging service: current status and future developments. Adv Space Res 36:327–332. doi:10.1016/j.asr.2004.12.012
Gurtner W, Pop E, Utzinger J (2009) The new 100-Hz laser system in zimmerwald: concept, installation, and first experiences. In: Proceedings of the 16th international workshop on laser ranging, October 12–17, 2008, Poznań, pp 350–357
Jäggi A, Bock H, Meyer U, Beutler G, van den IJssel J (2015) GOCE: assessment of GPS-only gravity field determination. J Geod 89(1):33–48. doi:10.1007/s00190-014-0759-z
Lutz S, Steigenberger P, Meindl M, Beutler G, Sośnica K, Schaer S, Dach R, Arnold D, Thaller D, Jäggi A (2015) Impact of the arclength on GNSS analysis results. J Geod (submitted manuscript)
Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026
Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297. doi:10.1007/s00190-014-0774-0
Otsubo T, Amagai J, Kunimori H (1999) The center-of-mass correction of the geodetic satellite AJISAI for single-photon laser ranging. IEEE Trans Geosci Remote Sens 37(4):2011–2018. doi:10.1109/36.774712
Otsubo T, Appleby G, Gibbs P (2001) Glonass laser ranging accuracy with satellite signature effect. SGEO 22(5–6):509–516. doi:10.1023/A:1015676419548
Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 109(B4):9.1–9.10. doi:10.1029/2002JB002209
Otsubo T, Sherwood R, Appleby G, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod. doi:10.1007/s00190-014-0776-y
Pavlis EC (1995) Comparison of GPS S/C orbits determined from GPS and SLR tracking data. Adv Space Res 16(12):55–58. doi:10.1016/0273-1177(95)98780-R
Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6
Petit G, Luzum B (eds) (2011) IERS conventions 2010. IERS Technical Note 36. Frankfurt am Main. Verlag des Bundesamts für Kartographie und Geodäsie, 2010
Ploner M, Jäggi A, Prohaska M, Schildknecht T, Utzinger J (2012) SLR tracking of GNSS constellations at Zimmerwald. In: Proceedings of ILRS technical workshop on laser ranging, Frascati, Italy, November 05–09, 2012
Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi:10.1007/s00190-011-0517-4
Rodriguez J, Appleby G (2013) Expanding the SLR space segment with the Galileo constellation? In: Proceedings of 18th ILRS workshop on laser ranging, Fujiyoshida, Japan
Schillak S (2013) The results of two-color observations. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan, November 11–15, 2013
Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of atmospheric pressure loading on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769. doi:10.1007/s00190-013-0644-1
Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62
Springer T, Dilssner F, Escobar D, Otten M, Romero I, Dow J (2009) Multi-technique reprocessing and combination using “space-ties”. American Geophysical Union, Fall Meeting 2009, abstract G13A-03. http://acc.igs.org/repro1/multitechnique-repro_agu09
Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431. doi:10.1016/j.asr.2014.12.009
Svehla D, Haagmans R, Floberghagen R, Cacciapuoti L, Sierk B, Kirchner G, Rodriguez J, Wilkinson M, Appleby G, Ziebart M, Hugentobler U, Rothacher M (2013) Geometrical SLR approach for reference frame determination—the first SLR double-difference baseline. IAG Scientific Assembly—150 years of IAG, 1–6 September 2013, Potsdam
Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi:10.1007/s00190-010-0433-z
Thaller D, Sośnica K, Dach R, Jäggi A, Mareyen M, Richter B, Beutler G (2012a) GNSS satellites as co-locations for a combined GNSS and SLR analysis. Mitteilungen des Bundesamtes für Kartographie und Geodäsie Band 48. In: Proceedings of the 17th international workshop on laser ranging, vol 48, pp 82–86. ISSN 1436–3445. ISBN: 978-3-89888-999-5
Thaller D, Sośnica K, Dach R, Jäggi A, Baumann C (2012b) SLR residuals to GPS/GLONASS and combined GNSS-SLR analysis. In: Proceedings of 12th ILRS technical workshop on laser ranging, Frascati, Italy, November 05–09, 2012. http://www.bernese.unibe.ch/publist/2012/pres/dt_ILRS2012_GNSS
Thaller D, Sośnica K, Dach R, Jäggi A, P Steigenberger (2012c) GNSS orbit validation using SLR observations at CODE. In: IGS workshop 2012, Olsztyn, Poland, July 23–27, 2012
Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Earth on the edge: science for a sustainable planet, international association of geodesy symposia, vol 139, pp 129–134. doi:10.1007/978-3-642-37222-3_16
Thomas L, Merkovitz S (2014) Update on the GPS III laser retroreflector array. In: Proceedings of the 19th international workshop on laser ranging, Annapolis, US, October 27–31, 2014
Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi:10.1016/j.asr.2007.01.038
Vasiliev VP, Sadovnikov MA, Shargorodskiy VD, Sokolov AL (2014) New ideas in retroreflector arrays development. In: Proceedings of the 19th international workshop on laser ranging, Annapolis, US, October 27–31, 2014
Wilkinson M, Appleby G (2011) In-orbit assessment of laser retro-reflector efficiency onboard high orbiting satellites. Adv Space Res 48(3):578. doi:10.1016/j.asr.2011.04.008
Wilkinson M (2012) SGF tracking of GNSS. In: Proceedings of the international technical laser workshop 2012 (ITLW-12), Frascati (Rome), Italy, November 5–9, 2012
Zhu SY, Reigber C, Kang Z (1997) Apropos laser tracking to GPS satellites. J Geod 71(7):423–431. doi:10.1007/s001900050110