Saponins: Anti-diabetic principles from medicinal plants – A review

Pathophysiology - Tập 22 Số 2 - Trang 95-103 - 2015
Olusola Olalekan Elekofehinti1
1Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kavishankar, 2011, Diabetes and medicinal plants – a review, Int. J. Pharm. Biomed. Sci., 2, 65

King, 1998, Global burden of diabetes, 1995–2025 prevalence, numerical estimates and projections, Diab. Care, 21, 1414, 10.2337/diacare.21.9.1414

Ghoul, 2012, Antihyperglycemic, antihyperlipidemic and antioxidant activities of traditional aqueous extract of Zygophyllum album in streptozotocin diabetic mice, Pathophysiology, 19, 35, 10.1016/j.pathophys.2011.12.001

Bach, 1995, Insulin-dependent diabetes mellitus as a β-cell targeted disease of immunoregulation, J. Autoimmun., 8, 439, 10.1016/0896-8411(95)90001-2

Yadav, 2004, Effects of sodium-orthovanadate and trigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes, J. Biosci., 29, 81, 10.1007/BF02702565

Arky, 1982, Clinical correlates of metabolic derangements of diabetes mellitus, 16

Sochor, 1985, Glucose over and underutilization in diabetes: comparative studies on the changes in activities of enzymes of glucose metabolism in rat kidney and liver, Mol. Physiol., 7, 51

Dey, 2002, Alternative therapies for type 2 diabetes, Altern. Med. Rev., 7, 45

Seely, 1993, Potential cellular and genetic mechanisms for insulin resistance in common disorders of obesity and diabetes, 187

Olefsky, 1999, Insulin-stimulated glucose transport mini review series, J. Biol. Chem., 274, 1863, 10.1074/jbc.274.4.1863

Clark, 1988, Islet amyloid increased alpha-cells, reduced beta-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes, Diab. Res., 9, 151

Ivorra, 1989, A review of natural products and plants as potential antidiabetic drugs, Ethnopharmacology, 27, 243, 10.1016/0378-8741(89)90001-9

Tahrani, 2010, Glycemic control in type 2 diabetes: targets and new therapies, Pharmacol. Ther., 125, 328, 10.1016/j.pharmthera.2009.11.001

Srinivasan, 2005, Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts, Int. J. Food Sci. Nutr., 56, 399, 10.1080/09637480500512872

Meliani, 2011, Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats, Asian Pac. J. Trop. Biomed., 1, 468, 10.1016/S2221-1691(11)60102-0

Osadebe, 2011, Antidiabetic principles of Loranthus micranthus Linn. on parasitic Persea americana, Asian Pac. J. Trop. Med., 1, 619

Kumar, 2012, Antidiabetic activity of alcoholic root extract of Caesalpinia digyna in streptozotocin-nicotinamide induced diabetic rats, Asian Pac. J. Trop. Biomed., 934, 10.1016/S2221-1691(12)60340-2

Raju, 2001, Trigonella foenumgraecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes, Mol. Cell. Biochem., 224, 45, 10.1023/A:1011974630828

Khanna, 2008, Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata, World J. Microbiol. Biotechnol., 24, 2737, 10.1007/s11274-008-9758-7

Petit, 1993, Effects of a fenugreek seed extract on feeding behaviour in the rat: metabolic endocrine correlates, Pharmacol. Biochem. Behav., 45, 369, 10.1016/0091-3057(93)90253-P

Kim, 1998, Butanol extract of 1:1 mixture of Phellodendron cortex and Aralia cortex stimulates PI3-kinase and ERK2 with increase of glycogen levels in HepG2 cells, Phytother. Res., 12, 255, 10.1002/(SICI)1099-1573(199806)12:4<255::AID-PTR289>3.0.CO;2-9

Lee, 2000, Hypoglycaemic and hypolipidemic effects of tectorigenin and kaika-saponin III in the streptozotocin-induced diabetic rat and their antioxidant activity in vitro, Arch. Pharm. Res., 23, 461, 10.1007/BF02976573

Yoshikawa, 2001, Medicinal flowers. III. Marigold (1): hypoglycaemic, gastric emptying inhibitory, and gastroprotective principles and new oleanane-type triterpeneoligoglycosides, calendasaponins A, B, C, and D, from Egyptian Calendula officinalis, Chem. Pharm. Bull., 49, 863, 10.1248/cpb.49.863

Eu, 2010, Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high – fat diet induced obese rats, Lipids Health Dis., 9, 1, 10.1186/1476-511X-9-81

Lee, 2011, The antidiabetic effect of genosenoside Rb2 via activation of AMPK, Arch. Pharm. Res., 34, 1201, 10.1007/s12272-011-0719-6

Bhavsar, 2009, Effect of saponins from Helicteresisora on lipid and glucose metabolism regulating genes expression, J. Ethnopharmacol., 124, 426, 10.1016/j.jep.2009.05.041

Hu, 2012, Dietary saponins of sea cucumber ameliorate obesity, hepatic steatosis, and glucose intolerance in high-fat diet – fed mice, J. Med. Food, 15, 909, 10.1089/jmf.2011.2042

Riguera, 1997, Isolating bioactive compounds from marine organisms, J. Mar. Biotechnol., 5, 187

Yoshiki, 1998, Relationship between chemical structures and biological activities of triterpenoid saponins from soybean (Review), Biosci. Biotechnol. Biochem., 62, 2291, 10.1271/bbb.62.2291

Francis, 2002, The biological action of saponins in animal systems: a review, Br. J. Nutr., 88, 587, 10.1079/BJN2002725

Metwally, 2012, Chemical constituents of the Egyptian Plant Anabasis articulata (Forssk) Moq and its antidiabetic effects on rats with streptozotocin-induced diabetic hepatopathy, J. Appl. Pharm. Sci., 2, 54

Jiang, 1999, Effects of ASI on insulin and C-peptide, Heilongjiang Med. Pharm., 22, 14

Yin, 2004, Protective effects of Astragalus Saponin I on early stage of diabetic nephropathy in rats, J. Pharmacol. Sci., 95, 256, 10.1254/jphs.FP0030597

Yin, 2006, The antioxidative effects of Astragalus Saponin I protect against development of early diabetic nephropathy, J. Pharmacol. Sci., 101, 166, 10.1254/jphs.FP0050041

Yu, 2006, Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats, Can. J. Physiol. Pharmacol., 84, 579, 10.1139/y06-015

Lv, 2010, Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin, Phytother. Res., 24, 219, 10.1002/ptr.2915

McAnuff, 2005, Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides, Food Chem. Toxicol., 43, 1667, 10.1016/j.fct.2005.05.008

Marie, 2006, Intestinal disaccharides and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam, Life Sci., 78, 2595, 10.1016/j.lfs.2005.10.046

Mirunalini, 2011, Novel effect of diosgenin – a plant derived steroid. A review, Pharmacologyonline, 1, 726

Zheng, 2012, Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats, J. Ethnopharmacol., 139, 814, 10.1016/j.jep.2011.12.025

Richards, 1990, Studies in Garcinia dioecious tropical forest trees: agamospermy, Bot. J. Linn. Soc., 10, 233, 10.1111/j.1095-8339.1990.tb00186.x

Alli Smith, 2012, Hypoglycaemic effect of saponin from the root of Garcinia kola on alloxan – induced diabetic rats, J. Drug Deliv. Pharm., 2, 9

Bhavsar, 2009, Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora, J. Ethnopharmacol., 126, 386, 10.1016/j.jep.2009.09.027

Bracesco, 2011, Recent advances on Ilex paraguarensis research: mini review, J. Ethnopharmacol., 136, 378, 10.1016/j.jep.2010.06.032

Mors, 2000, 501

Cardozo-Junior, 2007, Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil, J. Food Compos. Anal., 20, 553, 10.1016/j.jfca.2007.04.007

Cruz, 1964, 323

Heck, 2007, Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations, J. Food Sci., 72, 138, 10.1111/j.1750-3841.2007.00535.x

Kim, 2012, Effect of green mate in overweight volunteers: a randomized placebo-controlled human study, J. Funct. Foods, 4, 287, 10.1016/j.jff.2011.12.005

Martins, 2009, Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high-fat diet-induced obese mice, Obesity, 18, 42, 10.1038/oby.2009.189

Paganini, 2005, Vascular responses to extractable fractions of Ilex paraguariensis in rats fed standard and high-cholesterol diets, Biol. Res. Nurs., 7, 146, 10.1177/1099800405280521

Pang, 2012, The activity of mate saponins (Ilex paraguariensis) in intra-abdominal and epididymal fat, and glucose oxidation in male Wistar rats, J. Ethnopharmacol., 114, 735

Resende, 2012, The activity of mate saponins (Ilex paraguariensis) in intra-abdominal and epididymal fat, and glucose oxidation in male Wistar rats, J. Ethnopharmacol., 144, 735, 10.1016/j.jep.2012.10.023

Habicht, 2011, Quantification of antidiabetic extracts and compounds in bitter gourd varieties, Food Chem., 126, 172, 10.1016/j.foodchem.2010.10.094

Oishi, 2007, Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction, Biosci. Biotechnol. Biochem., 71, 735, 10.1271/bbb.60570

Chang, 2011, In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24, Food Chem., 125, 521, 10.1016/j.foodchem.2010.09.043

Chen, 2008, Saponins isolated from the root of Panax notoginseng showed significant anti-diabetic effects in KK-Ay mice, Am. J. Chin. Med., 36, 939, 10.1142/S0192415X08006363

Yang, 2010, Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components, J. Ethnopharmacol., 130, 231, 10.1016/j.jep.2010.04.039

Kim, 2009, The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 Cells, Am. J. Chin. Med., 37, 1179, 10.1142/S0192415X09007582

Qi, 2011, Ginsenosides from American ginseng: chemical and pharmacological diversity, Photochemistry, 72, 689, 10.1016/j.phytochem.2011.02.012

Kwon, 2012, Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo, Eur. J. Nutr., 51, 529, 10.1007/s00394-011-0236-x

Denga, 2012, Saponin rich fractions from Polygonatu modoratum (Mill.) druce with more potential hypoglycemic effects, J. Ethnopharmacol., 141, 228, 10.1016/j.jep.2012.02.023

Tanaka, 2003, Effects of dietary black sea cucumber on serum and liver lipid concentrations in rats, J. Jpn. Soc. Nutr. Food Sci., 56, 175, 10.4327/jsnfs.56.175

Liu, 2002, Hypolipidemic effect of glycosaminoglycans from the sea cucumber Metriatyla scabra in rats fed a cholesterol-supplemented diet, J. Agric Food Chem., 50, 3602, 10.1021/jf020070k

Kalinin, 2000, System-theoretical (Holistic) approach to the modelling of structural–functional relationships of biomolecules and their evolution: an example of triterpene glycosides from sea cucumbers (Echinodermata, Holothurioidea), J. Theor. Biol., 206, 151, 10.1006/jtbi.2000.2110

Tian, 2005, A new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo, Cancer Biol. Ther., 4, 874, 10.4161/cbt.4.8.1917

Zou, 2003, Intercedensides A-C, three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert, J. Nat. Prod., 66, 1055, 10.1021/np030064y

Hu, 2010, Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling, Lipids Health Dis., 9, 25, 10.1186/1476-511X-9-25

Elekofehinti, 2012, Aqueous extract of Solanum anguivi Lam. fruits (African egg plant) inhibit Fe2+ and SNP induced lipid peroxidation in Rat's brain – In Vitro, Der Pharm. Lett., 4, 1352

Elekofehinti, 2013, Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats, S. Afr. J. Bot., 88, 56, 10.1016/j.sajb.2013.04.010

Hemalatha, 2010, Arjunolic axid: a novel phytomedicine with multifunctional therapeutic applications, Indian J. Exp. Biol., 48, 238

Uemura, 2010, Diosgenin, the main aglycon of fenugreek, inhibits LXRa activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice, J. Nutr., 141, 17, 10.3945/jn.110.125591

Shah, 2008, Evaluation of anti-diabetic and antioxidant activity of Centratherum anthelminticain STZ-induced diabetes in rats, Int. Internet J. Pharmacol., 6, 1

Sharma, 2010, Hypoglycemic activity of Ficus glomerata in alloxan induced diabetic rat, Int. J. Pharm. Sci. Rev. Res., 1, 18

Dinesh, 2011, Azadirachtolide: an anti-diabetic and hypolipidemic effects from Azadirachta indica leaves, Pharm. Commun., 1, 78

Nishikawa, 2000, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature, 404, 787, 10.1038/35008121

Joshep, 2002, Oxidative stress and stress—activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocr. Rev., 23, 599, 10.1210/er.2001-0039

Dave, 2007, Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy, Cell Mol. Biol., 53, 68

Rosen, 2001, The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association, and the German Diabetes Society, Diab. Metab. Res. Rev., 17, 189, 10.1002/dmrr.196

Evans, 1996, 124

Brownlee, 2001, Biochemistry and molecular cell biology of diabetic complications, Nature, 414, 813, 10.1038/414813a

Koya, 1998, Protein kinase C activation and the development of diabetic complications, Diabetes, 47, 859, 10.2337/diabetes.47.6.859

Stevens, 2000, The sorbitol-osmotic and sorbitol-redox hypothesis, 972

Baynes, 1991, Role of oxidative stress in development of complications in diabetes, Diabetes, 40, 405, 10.2337/diab.40.4.405

Lee, 2003, Effects of tissue cultured ginseng on blood glucose and lipids in streptozotocin-induced diabetic rats, Korean J. Food Sci. Technol., 35, 280

Forbes, 2008, Oxidative stress as a major culprit in kidney disease in diabetes, Diabetes, 57, 1446, 10.2337/db08-0057

Elekofehinti, 2012, Saponins from Solanum anguivi lam. fruit exhibit in vitro and in vivo antioxidant activities in alloxan-induced oxidative stress, Asian J. Pharm. Clin. Res., 6, 249

Malomo, 2011, In vitro and in vivo antioxidant activities of the aqueous extract of Celosia argentea leaves, Indian J. Pharmacol., 43, 278, 10.4103/0253-7613.81519

Gülçin, 2004, Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.), J. Ethnopharmacol., 90, 205, 10.1016/j.jep.2003.09.028

Aronson, 2002, How hyperglycemia promotes atherosclerosis: molecular mechanisms, Cardiovasc. Diab., 1, 1, 10.1186/1475-2840-1-1

Xi, 2008, Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus, Phytother. Res., 22, 228, 10.1002/ptr.2297

Siddiqui, 2007, Chem. Pharm. Bull., 55, 1356, 10.1248/cpb.55.1356

Aronoff, 2004, Glucose metabolism and regulation: beyond insulin and glucagon, Diab. Spectr., 17, 183, 10.2337/diaspect.17.3.183

Sakatani, 2005, The association between cholesterol and mortality in heart failure. Comparison between patients with and without coronary artery disease, Int. Heart J., 46, 619, 10.1536/ihj.46.619

Abbate, 1990, Pathophysiology of hyperlipidemia in diabetes mellitus, J. Cardiovasc. Pharmacol., 16, S1, 10.1097/00005344-199000169-00002

Oki, 1995, Dyslipidemias in patients with diabetes mellitus: classification and risks and benefits of therapy, Pharmacotherapy, 15, 317, 10.1002/j.1875-9114.1995.tb04369.x

Song, 2011, Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet, J. Sci. Food Agric., 92, 388, 10.1002/jsfa.4589

Gregoire, 2001, Adipocyte differentiation: from fibroblast to endocrine cell, Exp. Biol. Med., 226, 997, 10.1177/153537020122601106

Shang, 2007, Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPAR(2 and C/EBPα gene expression, Life Sci., 80, 618, 10.1016/j.lfs.2006.10.021

Kelley, 2001, Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance, Diab. Care, 24, 933, 10.2337/diacare.24.5.933

Tammi, 2000, Plant stanol ester margarine lowers serum total and low-density lipoprotein cholesterol concentrations of healthy children: the STRIP project. Special Turku Coronary Risk Factors Intervention Project, J. Pediatr., 136, 503, 10.1016/S0022-3476(00)90014-3

Li, 2006, High-fat and lipid-induced insulin resistance in rats: the comparison of glucose metabolism, plasma resistin and adiponectin levels, Ann. Nutr. Metab., 50, 499, 10.1159/000098141

Matri, 2008, Nutrition interaction between genes and lifestyle factors on obesity, Proc. Nutr. Soc., 67, 1, 10.1017/S002966510800596X

Qi, 2008, Gene – environment interaction and obesity, Nutr. Rev., 66, 684, 10.1111/j.1753-4887.2008.00128.x

Leong, 1999, Obesity and diabetes best practice & research, Clin. Endocr. Metabol., 13, 221

Laclaustra, 2007, Metabolic syndrome pathophysiology: the role of adipose tissue, Nur. Metab. Cardiovasc. Dis., 17, 125, 10.1016/j.numecd.2006.10.005

Han, 2007, Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice, J. Agric Food Chem., 55, 10641, 10.1021/jf0722598

Hamao, 2011, Anti-obesity effects of the methanolic extract and chaka saponins from the flower buds of Camellia sinensis in mice, Bioorg. Med. Chem., 19, 6033, 10.1016/j.bmc.2011.08.042

Pollare, 1991, Lipoprotein lipase activity in the skeletal muscle is related to insulin sensitivity, Arterioscler. Thromb. Vasc. Biol., 11, 1192, 10.1161/01.ATV.11.5.1192

Kageyama, 2003, Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-gamma, Biochem. Biophys. Res. Commun., 305, 22, 10.1016/S0006-291X(03)00663-6

Han, 2002, Saponins from Platycodi radix ameliorate high fat diet-induced obesity in mice, J. Nutr., 132, 2241, 10.1093/jn/132.8.2241

Hamza, 2012, Preventive and curative effect of Trigonella foenum-graecum L. seeds in C57BL/6J models of type2 diabetes induced by high-fat diet, J. Ethnopharmacol., 142, 516, 10.1016/j.jep.2012.05.028