Sand and dust storm sources identification: A remote sensing approach
Tài liệu tham khảo
Alimohammadi, 2015, Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran, Ore Geol. Rev., 70, 290, 10.1016/j.oregeorev.2015.04.010
Ashrafi, 2014, Dust storm simulation over Iran using HYSPLIT, J. Environ. Health Sci. Eng., 12, 1, 10.1186/2052-336X-12-9
Bahraminejad, 2018, Proposing an early-warning system for optimal management of protected areas (Case study: Darmiyan protected area, Eastern Iran), J. Nat. Conserv., 46, 79, 10.1016/j.jnc.2018.08.013
Baig, 2014, Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance, Remote Sensing Lett., 5, 423, 10.1080/2150704X.2014.915434
Bakker, 2018, Identifying African mineral dust sources and tracking dust events towards the Amazon Basin, 334
Basso, 2004, Remotely sensed vegetation indices: Theory and applications for crop management, Rivista Italiana di Agrometeorologia, 1, 36
Belnap, 1998, Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance, J. Arid Environ., 39, 133, 10.1006/jare.1998.0388
Blair, 1999, Grain-size and textural classification of coarse sedimentary particles, J. Sediment. Res., 69, 6, 10.2110/jsr.69.6
Borrelli, 2017, A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach, Land Degrad. Dev., 28, 335, 10.1002/ldr.2588
Borrelli, 2016, Towards a Pan-European assessment of land susceptibility to wind erosion, Land Degrad. Dev., 27, 1093, 10.1002/ldr.2318
Chambers, 2012, Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography, Geomorphology, 177–178, 17, 10.1016/j.geomorph.2012.03.034
Chiapello, I., Minvielle, F., Legrand, M., Laurent, B., Bouet, C., Siour, G., Marticorena, B., Rashki, A., Kaskaoutis, D., 2017. Satellite observations of mineral dust in the Sistan region, A-Train Symposium 2017.
Cuspilici, 2017, Study of Saharan dust influence on PM10 measures in Sicily from 2013 to 2015, Ecol. Ind., 76, 297, 10.1016/j.ecolind.2017.01.016
Department of Environment, 2014. The environment of Alborz Province, threats, opportunities and proposed solutions. Department of Environment Karaj, Iran.
Draxler, R.R., Hess, G., 1997. Description of the HYSPLIT4 modeling system.
Draxler, 1999, HYSPLIT4 user’s guide, NOAA Technical Memorandum ERL ARL, 230, 35
Du, 2018, Modelling of sand/dust emission in Northern China from 2001 to 2014, Geoderma, 330, 162, 10.1016/j.geoderma.2018.05.038
Eastman, J.R., 2015a. TerrSet manual. Accessed in TerrSet version 18, 1-390.
Eastman, 2015
Emery, 2017
Escudero, 2011, Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model, Atmos. Res., 99, 518, 10.1016/j.atmosres.2010.12.002
Fang, 2016, Changes in aerosol optical and micro-physical properties over northeast Asia from a severe dust storm in April 2014, Remote Sensing, 8, 394, 10.3390/rs8050394
Fern, 2018, Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland, Ecol. Ind., 94, 16, 10.1016/j.ecolind.2018.06.029
Froyd, 2017
Gerivani, 2011, The source of dust storm in Iran: a case study based on geological information and rainfall data, Carpathian J. Earth Environ. Sci., 6
Gharai, 2013, Monitoring intense dust storms over the Indian region using satellite data – a case study, Int. J. Remote Sens., 34, 7038, 10.1080/01431161.2013.813655
Gherboudj, 2017, Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth Sci. Rev., 165, 342, 10.1016/j.earscirev.2016.12.010
Gherboudj, 2017, Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth Sci. Rev., 165, 342, 10.1016/j.earscirev.2016.12.010
Ginoux, 2012, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50, 10.1029/2012RG000388
Goudie, 2006
Gu, 2018, Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China, Ecol. Ind., 93, 54, 10.1016/j.ecolind.2018.04.033
Hansen, 1999, Roughness indices for estimation of depression storage capacity of tilled soil surfaces, Soil Tillage Res., 52, 103, 10.1016/S0167-1987(99)00061-6
IPCC, 2001. Aerosols, their Direct and Indirect Effects, TAR Climate Change 2001. IPCC.
Iran Meteorological Organization, 2014
Jensen, 2013
Jiang, 2015, Spatio-temporal analysis of vegetation variation in the Yellow River Basin, Ecol. Ind., 51, 117, 10.1016/j.ecolind.2014.07.031
Jin, 2005, Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sens. Environ., 94, 364, 10.1016/j.rse.2004.10.012
Kaźmierowski, C., Ceglarek, J., Królewicz, S., Cierniewski, J., Universityc, A.M., Jasiewicz, J., Wyczałek, M., 2015. Soil surface roughness quantification using DEM obtained from UAV photogrammetry.
Kuempel, 2003, Pulmonary inflammation and crystalline silica in respirable coal mine dust: dose response, J. Biosci., 28, 61, 10.1007/BF02970133
Lei, 2004, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats, Environ. Res., 95, 71, 10.1016/S0013-9351(03)00136-1
Levelt, 2006, The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093, 10.1109/TGRS.2006.872333
Levy, R., Hsu, C., 2015a. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System.
Levy, R., Hsu, C., 2015b. MODIS Atmosphere L2 Aerosol Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA.
Liang, 2018, Vertical accuracy evaluation of aster GDEM2 over a mountainous area based on UAV photogrammetry, Int. Archiv. Photogramm. Remote Sensing Spatial Inf. Sci., 42
Liu, 2014, A tasseled cap transformation for Landsat 8 OLI TOA reflectance images, IEEE, 541
Liu, 2004, Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions, J. Geophys. Res.: Atmos., 109, n/a-n/a
Liu, 2017, Characterizing spatiotemporal patterns of air pollution in China: A multiscale landscape approach, Ecol. Ind., 76, 344, 10.1016/j.ecolind.2017.01.027
Long, 2016, Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data, Sci. Total Environ., 541, 1603, 10.1016/j.scitotenv.2015.10.063
Malczewski, 2015
Mashayekhan, 2011, Multi-criteria evaluation model for desertification hazard zonation mapping using GIS (study area: Trouti watershed, Golestan, Iran), J. Rangeland Sci., 1, 9
McGowan, 2008, Identification of dust transport pathways from Lake Eyre, Australia using Hysplit, Atmos. Environ., 42, 6915, 10.1016/j.atmosenv.2008.05.053
Mezősi, 2016, Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data, Open Geosci., 465
Mingari, 2017, Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015, Atmos. Chem. Phys., 17, 6759, 10.5194/acp-17-6759-2017
Mishra, 2015, Detection of Asian dust storms from geostationary satellite observations of the INSAT-3D imager, Int. J. Remote Sens., 36, 4668, 10.1080/01431161.2015.1084432
Moreno, 2011, Significance of soil erosion on soil surface roughness decay after tillage operations, Soil Tillage Res., 117, 49, 10.1016/j.still.2011.08.006
Mostafiz, 2018, Tasseled cap transformation for assessing hurricane landfall impact on a coastal watershed, Int. J. Appl. Earth Obs. Geoinf., 73, 736
Naji, 2018, Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot, J. Phys.: Conf. Series. IOP Publishing
Ngan, 2018, Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment, Atmos. Environ., 186, 18, 10.1016/j.atmosenv.2018.05.012
Parajuli, 2014, Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing, J. Geophys. Res. Earth Surf., 119, 1977, 10.1002/2014JF003095
Pianalto, 2013, Monitoring fugitive dust emission sources arising from construction: a remote-sensing approach, GIScience Remote Sensing, 50, 251, 10.1080/15481603.2013.808517
Pozzer, 2015, AOD trends during 2001–2010 from observations and model simulations, Atmos. Chem. Phys., 15, 5521, 10.5194/acp-15-5521-2015
Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., Gill, T.E., 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of geophysics 40.
Pun, 2017, Particulate matter from re-suspended mineral dust and emergency cause-specific respiratory hospitalizations in Hong Kong, Atmos. Environ., 165, 191, 10.1016/j.atmosenv.2017.06.038
Rayegani, B., 2016. Identification of main dust sources in Alborz Province and checking their trends in the past 15 years. College of Environment, the Office of Department of Environment in Alborz Province p. 357.
Rayegani, 2019, An effective approach to selecting the appropriate pan-sharpening method in digital change detection of natural ecosystems, Ecol. Inform., 53, 100984, 10.1016/j.ecoinf.2019.100984
Saranya, 2016, Terrain Based D∗ Algorithm for Path Planning, IFAC-PapersOnLine, 49, 178, 10.1016/j.ifacol.2016.03.049
Sashikkumar, 2017, Remote sensing for recognition and monitoring of vegetation affected by soil properties, J. Geol. Soc. India, 90, 609, 10.1007/s12594-017-0759-8
Schepanski, 2007, A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels, Geophys. Res. Lett., 34, 10.1029/2007GL030168
Schmidt, S., Meusburger, K., Alewell, C., 2017a. Soil loss by wind (SoLoWind): a new GIS-based model to identify risk areas.
Schmidt, 2017, Modelling Hot spots of soil loss by wind erosion (SoLoWind) in Western Saxony, Germany, Land Degrad. Dev., 28, 1100, 10.1002/ldr.2652
Schwanghart, 2008, Meteorological causes of Harmattan dust in West Africa, Geomorphology, 95, 412, 10.1016/j.geomorph.2007.07.002
Stein, 2015, NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc., 96, 2059, 10.1175/BAMS-D-14-00110.1
Stein, 2011, Modeling PM10 originating from dust intrusions in the Southern Iberian Peninsula using HYSPLIT, Weather Forecasting, 26, 236, 10.1175/WAF-D-10-05044.1
Tarazona, 2018, Improving tropical deforestation detection through using photosynthetic vegetation time series – (PVts-β), Ecol. Ind., 94, 367, 10.1016/j.ecolind.2018.07.012
Torres, 2018, Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products, Atmos. Meas. Tech., 11, 2701, 10.5194/amt-11-2701-2018
Van Pelt, 2017, Total vertical sediment flux and PM 10 emissions from disturbed Chihuahuan Desert surfaces, Geoderma, 293, 19, 10.1016/j.geoderma.2017.01.031
Vannier, 2018, Using digital elevation models and image processing to follow clod evolution under rainfall, J. Ecol. Toxicol., 2
Vogeler, 2018, Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015), Remote Sens. Environ., 209, 363, 10.1016/j.rse.2018.02.046
Wang, 2011, Global sand and dust storms in 2008: Observation and HYSPLIT model verification, Atmos. Environ., 45, 6368, 10.1016/j.atmosenv.2011.08.035
WMO, Sand and Dust Storms, WMO.
Xu, 2011, Sand and dust storm detection over desert regions in China with MODIS measurements**, Int. J. Remote Sens., 32, 9365, 10.1080/01431161.2011.556679
Yerramilli, 2012, An integrated WRF/HYSPLIT modeling approach for the assessment of PM2. 5 source regions over the Mississippi Gulf Coast region, Air Qual. Atmos. Health, 5, 401, 10.1007/s11869-010-0132-1
Yiming, 2018, 155
Zhang, 2018, Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change, Ecol. Ind., 93, 458, 10.1016/j.ecolind.2018.05.026
Zobeck, 2011, Wind Erosion, 209