Chiến lược Lấy Mẫu Để Giảm Thiểu Sự Bất Định Trong Các Trường Ngẫu Nhiên Phân Loại: Hình Thành, Phân Tích Toán Học và Ứng Dụng Cho Các Mô Hình Nhiều Điểm

Mathematical Geosciences - Tập 51 - Trang 579-624 - 2019
Felipe Santibañez1, Jorge F. Silva1, Julián M. Ortiz2
1Information and Decision System Group (IDS), Department of Electrical Engineering, University of Chile, Santiago, Chile
2The Robert M. Buchan Department of Mining, Queen’s University, Kingston, Canada

Tóm tắt

Nhiệm vụ lấy mẫu tối ưu cho mô phỏng thống kê của một trường ngẫu nhiên rời rạc được giải quyết từ góc độ giảm thiểu sự bất định hậu nghiệm của các vị trí chưa được cảm biến dựa trên thông tin của các vị trí đã được cảm biến. Cụ thể, các biện pháp lý thuyết thông tin được áp dụng để hình thức hóa vấn đề thiết kế lấy mẫu tối ưu cho việc đặc trưng hóa trường, nơi mà các khái niệm như thông tin của các phép đo, sự bất định hậu nghiệm trung bình, và khả năng giải quyết của trường được giới thiệu. Việc sử dụng entropy và các biện pháp thông tin liên quan được xác nhận bằng cách kết nối nhiệm vụ mô phỏng với một vấn đề mã hóa nguồn, trong đó đã được biết rằng entropy cung cấp một giới hạn hiệu suất cơ bản. Trong ứng dụng, một mô hình chuỗi Markov một chiều được khám phá nơi mà thống kê của đối tượng ngẫu nhiên được biết, và sau đó trường hợp liên quan hơn của các mô phỏng nhiều điểm của các trường facies kênh được nghiên cứu, áp dụng trong trường hợp này một hình ảnh huấn luyện để suy diễn thống kê của một mô hình không tham số. Trong cả hai bối cảnh, sự vượt trội của các chiến lược lấy mẫu dựa trên thông tin đã được chứng minh trong các môi trường và điều kiện khác nhau, so với việc lấy mẫu ngẫu nhiên hoặc đều.

Từ khóa

#Lấy mẫu tối ưu #trường ngẫu nhiên phân loại #sự bất định hậu nghiệm #chiến lược lấy mẫu dựa trên thông tin #mô phỏng nhiều điểm.

Tài liệu tham khảo

Abellan A, Noetinger B (2010) Optimizing subsurface field data acquisition using information theory. Math Geosci 42(6):603–630. https://doi.org/10.1007/s11004-010-9285-6 Afshari S, Pishvaie M, Aminshahidy B (2014) Well placement optimization using a particle swarm optimization algorithm, a novel approach. Pet Sci Technol 32(2):170–179 Arpat B, Caers J (2007) Conditional simulations with patterns. Math Geol 39(2):177–203 Aspie D, Barnes RJ (1990) Infill-sampling design and the cost of classification errors. Math Geol 22(8):915–932 Bangerth W, Klie H, Matossian V, Parashar M, Wheeler M (2005) An autonomic reservoir framework for the stochastic optimization of well placement. Clust Comput 8:255–269 Bangerth W, Klie H, Wheeler MF, Stoffa P, Sen M (2006) On optimization algorithms for the reservoir oil well placement problem. Comput Geosci 10:303–319 Baraniuk RG, Davenport M, DeVore R, Wakin M (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263 Bittencourt AC, Horne RN (1997) Reservoir development and design optimization. In: SPE annual technical conference and exhibition, society of petroleum engineers, San Antonio, Texas, SPE, vol 38895, pp 1–14 Boyko N, Karamemis G, Kuzmenko V, Uryasev S (2014) Sparse signal reconstruction: LASSO and cardinality approaches. Springer, Cham, pp 77–90 Brus DJ, Heuvelink GBM (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138:86–95 Bui H, La C, Do M (2015) A fast tree-based algorithm for compressed sensing with sparse-tree prior. Signal Process 108(Complete):628–641. https://doi.org/10.1016/j.sigpro.2014.10.026 Candes EJ (2008) The restricted isometry property and its applications for compressed sensing. C R Acad Sci Paris I 346:589–592 Candes EJ, Romberg J, Tao T (2006a) Robust uncertanty principle: exact signal reconstruction from highly imcomplete frequency information. IEEE Trans Inf Theory 52(2):489–509 Candes EJ, Romberg J, Tao T (2006b) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59:1207–1223 Christakos G, Killam BR (1993) Sampling design for classifying contaminant level using annealing search algorithms. Water Resour Res 29(12):4063–4076 Christodoulou S, Gagatsis A, Xanthos S, Kranioti S, Agathokleous A, Fragiadakis M (2013) Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resour Manag Int J Pub Eur Water Resour Assoc (EWRA) 27(13):4443–4468. https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:13:p:4443-4468 Cohen A, Dahmen W, DeVore R (2009) Compressed sensing and best \(k\)-term approximation. J Am Math Soc 22(1):211–231 Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley Interscience, New York Cressie N, Gotway C, Grondona M (1990) Spatial prediction for networks. Tech Rep 7:251–271, Chermometr Intell Lab. Syst Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306 Eldar YC (2015) Sampling theory: beyond bandlimited systems, 1st edn. Cambridge University Press, New York Elfeki A, Dekking M (2001) A markov chain model for subsurface characterization: theory and applications. Math Geol 33(5):569–589. https://doi.org/10.1023/A:1011044812133 Founcart S, Lai M (2009) Sparsest solutions of underdetermined linear systems via \(\ell _p\)-minimization. Appl Comput Harmon Anal 26:395–407 Gao H, Wang J, Zhao P (1996) The updated kriging variance and optimal sample design. Math Geol 28(3):295–313 Goodchild M, Buttenfield B, Wood J (1994) Introduction to visualizing data validity. In: Hearnshaw HM, Unwin DJ (eds) Visualization in geographic information systems. Wiley, Chichester, pp 141–149 Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103:3–26 Gray R, Davisson LD (2004) Introduction to statistical signal processing. Cambridge University Press, Cambridge Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate methods. Geostatistics-Troia. Kluwer Academic, Amsterdam, pp 133–144 Guestrin C, Krause A, Singh A (2005) Near-optimal sensor placements in Gaussian processes. In: International conference on machine learning (ICML) Gutjahr A (1991) Geostatistics for sampling designs and analysis. In: Nash R (ed) Groundwater residue sampling design. American Chemical Society, ACS symposium series, Washington, DC, pp 48–90 Huang T, Lu DT, Li X, Wang L (2013) Gpu-based snesim implementation for multiple-point statistical simulation. Comput Geosci 54:75–87. https://doi.org/10.1016/j.cageo.2012.11.022 Kennedy BA (1990) Surface mining, 2nd edn. Society of mining. Metallurgy and Exploration Inc, Englewood Krause A, Guestrin C, Gupta A, Kleinberg J (2006) Near-optimal sensor placements: maximizing information while minimizing communication cost. In: Proc. of information processing in sensor networks (IPSN) Krause A, Leskovec J, Guestrin C, VanBriesen J, Faloutsos C (2008a) Efficient sensor placement optimization for securing large water distribution networks. J Water Resour Plan Manag 134(6):516–526 Krause A, Singh A, Guestrin C (2008b) Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J Mach Learn Res 9:235–284 Krause A, Guestrin C, Gupta A, Kleinberg J (2011) Robust sensor placements at informative and communication-efficient locations. ACM Trans Sens Netw. https://doi.org/10.1145/1921621.1921625 MacKay DJC (2002) Information theory, inference & learning algorithms. Cambridge University Press, New York Magnant Z (2011) Numerical methods for optimal experimental design of ill-posed problems. PhD thesis, Emory University, https://search.proquest.com/docview/881634811?accountid=14621 Marchant B, Lark R (2007) Optimized sample scheme for geostatistics surveys. Math Geol 39:113–134 Mariethoz G, Caers J (2015) Multiple-points geostatistics. Wiley Blackwell, Hoboken McBratney A, Webster R, Burgess T (1981a) The design of optimal sampling schemes for local estimation and mapping of regionalized variables—I: theory and method. Comput Geosci 7(4):331–334 McBratney A, Webster R, Burgess T (1981b) The design of optimal sampling schemes for local estimation and mapping of regionalized variables—II: program and examples. Comput Geosci 7(4):335–365 Norrena KP, Deutsch CV (2002) Automatic determination of well placement subject to geostatistical and economic constraints. In: SPE international thermal operations and heavy oil symposium and international horizontal well technology conference, society of petroleum engineers, Calgary, AB, Canada, SPE , vol 78996, pp 1–12 Norris J (1997) Markov chains. Cambridge University Press, Cambridge Olea RA (1984) Sampling design optimization for spatial functions. Math Geol 16(4):369–392 Ortiz JM, Deutsch CV (2004) Indicator simulation accounting for multiple-point statistics. Math Geol 36(5):545–565 Ostroumov V, Rachold V, Vasiliev A, Sorokovikov V (2005) An application of a markov-chain model of shore erosion for describing the dynamics of sediment flux. Geo-Mar Lett 25(2):196–203. https://doi.org/10.1007/s00367-004-0201-2 Peschel GJ, Mokosch M (1991) Interrelations between geostatistics and information theory and their practical use. Math Geol 23(1):3–7. https://doi.org/10.1007/BF02065960 Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS : a user’s guide. Cambridge University Press, formerly CIP, Cambridge Rossi ME, Deutsch CV (2014) Mineral resource estimation. Springer, Berlin Scheidt C, Caers J (2009) Representing spatial uncertainty using distances and kernels. Math Geosci 41(4):397–419. https://doi.org/10.1007/s11004-008-9186-0 Schweizer D, Blum P, Butscher C (2017) Uncertainty assessment in 3-d geological models of increasing complexity. Solid Earth 8(2):515–530. https://doi.org/10.5194/se-8-515-2017, https://www.solid-earth.net/8/515/2017/ Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656 Strebelle S (2002) Conditional simulation of complex geological structures using multiple points statistics. Math Geol 34(1):1–22 Strebelle S, Zhang T (2004) Non-stationary multiple-point geostatistical models. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff. Springer, Berlin, pp 235–244 van Groenigen J, Siderius W, Stein A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87:239–259 Vašat R, Heuvelink G, Borůvka L (2010) Sampling design optimization for multivariate soil mapping. Geoderma 155(3—-4):147–153 Vershynin R (2012) Introduction to the non-asymtotic analysis of random matrices (chap 5). In: Eldar Y, Kutyniok G (eds) Compressed sensing, theory and applications, 1st edn. Cambridge University Press, Cambridge, pp 210–268 Wellmann JF (2013) Information theory for correlation analysis and estimation of uncertanties reduction in maps and model. Entropy 15:1464–1485 Wellmann JF, Regenauer-Lieb K (2012) Uncertainties have a meaning: Information entropy as a quality measure for 3-d geological models. Tectonophysics 526(Supplement C):207–216. https://doi.org/10.1016/j.tecto.2011.05.001. http://www.sciencedirect.com/science/article/pii/S0040195111001788, modelling in Geosciences Wellmann JF, Horowitz FG, Schill E, Regenauer-Lieb K (2010) Towards incorporating uncertainty of structural data in 3d geological inversion. Tectonophysics 490(3):141–151. https://doi.org/10.1016/j.tecto.2010.04.022. http://www.sciencedirect.com/science/article/pii/S0040195110001691 Wellmer FW (1998) Statistical evaluations in exploration for mineral deposits. Springer, Berlin Wu J, Boucher A, Zhang T (2008) A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Comput Geosci 34(12):1863–1876 Xu C, Hu C, Liu X, Wang S (2017) Information entropy in predicting location of observation points for long tunnel. Entropy 19(7). https://doi.org/10.3390/e19070332. http://www.mdpi.com/1099-4300/19/7/332 Yeung RW (2002) A first course in information theory. Springer, Berlin Zhang C, Li W (2008) A comparative study of nonlinear markov chain models for conditional simulation of multinomial classes from regular samples. Stoch Environ Res Risk Assess 22(2):217–230. https://doi.org/10.1007/s00477-007-0109-2 Zidek J, Sun W, Le D (2000) Designing and integrating composite networks for monitoring multivarite gaussian pollution fields. Appl Stat 49:63–79