Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các lệch điều kiện trung bình của các đường mẫu cho lưu lượng tích lũy được sản xuất bởi một số lượng nguồn on-off ngẫu nhiên theo quy luật mũ ngày càng tăng
Tóm tắt
Chúng tôi xem xét tổ hợp của lưu lượng tích lũy được tạo ra bởi một số lượng ngày càng tăng của các nguồn on-off độc lập và phân phối thời gian on-off theo phân phối hình mũ. Chúng tôi thiết lập một gia đình các nguyên lý lệch lớn cho các đường mẫu khi lưu lượng được trung tâm hóa và sau đó được quy đổi với một yếu tố nằm giữa nghịch đảo của số lượng nguồn và căn bậc hai của nó. Hàm tỷ lệ chung trong gia đình này cũng xuất hiện trong nguyên lý lệch lớn cho xác suất đuôi của một quá trình Ornstein-Uhlenbeck tích hợp. Khi lưu lượng được sản xuất được trung tâm hóa và quy đổi với căn bậc hai của nghịch đảo số lượng nguồn, nó hội tụ về quá trình Ornstein-Uhlenbeck tích hợp này trong phân phối. Chúng tôi thảo luận về một số đại diện của hàm tỷ lệ. Chúng tôi áp dụng các kết quả này cho các hệ thống xếp hàng có lưu lượng on-off và tiếp cận tải trọng tới hạn.
Từ khóa
#lưu lượng tích lũy #nguồn on-off #nguyên lý lệch lớn #quá trình Ornstein-Uhlenbeck #hệ thống xếp hàngTài liệu tham khảo
Addie, R., Mannersalo, P., Norros, I.: Most probable paths and performance formulae for buffers with Gaussian input traffic. Eur. Trans. Telecommun. 13(3), 183–196 (2002)
Adler, R.J.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Lecture Notes-Monographs, vol. 12. Institute of Mathematical Statistics, Bethesda (1990)
Araujo, A., Giné, E.: The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York (1980)
Bahadur, R.R., Zabell, S.L.: Large deviations of the sample mean in general vector spaces. Ann. Probab. 7(4), 587–621 (1979)
Barndorf-Nielsen, O.E., Shepard, N.: Integrated OU processes and non-Gaussian OU-based stochastic volatility models. Scand. J. Stat. 30, 277–295 (2003)
Bauer, H.: Maß- und Integrationstheorie. de Gruyter, Berlin (1990)
Borovkov, A.A.: Asymptotic Methods in Queueing Theory. Wiley, Chichester (1984)
Brandt, A., Brandt, M.: On the distribution of the number of packets in the fluid flow approximation of packet arrival streams. Queueing Syst. 17, 275–315 (1994)
Chen, H., Mandelbaum, A.: Leontief systems, RBV’s and RBM’s. In: Davis, M.H.A., Elliott, R.J. (eds.) Proceedings of the Imperial College Workshop on Applied Stochastic Processes, pp. 1–43. Gordon and Breach, New York (1991)
Xia, C.: Probability of moderate deviations for b-valued independent random vectors. Chin. J. Contemp. Math. 11(4), 381–393 (1990)
Choudhury, G.L., Lucantoni, D.M., Whitt, W.: Squeezing the most out of ATM. IEEE Trans. Commun. 44(2), 203–217 (1996)
Cramér, H.: Sur un nouveaux theorème-limite de la théorie des probabilités. In: Actualités Scientifiques et Industrielles 736, vol. 3, pp. 5–23. Herman, Paris (1938) Colloque consacré à la théorie des probabilités, October 1937
Dębicki, K., Palmowski, Z.: On-off fluid models in heavy traffic environment. Queueing Syst. 33, 327–338 (1999)
Dembo, A., Zajic, T.: Uniform large and moderate deviations for functional empirical processes. Stoch. Process. Appl. 71, 195–211 (1997)
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, London (1993)
Deuschel, J.-D., Stroock, D.W.: Large Deviations. Academic, Boston (1989)
Dupuis, P., Ishii, H.: On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stoch. Stoch. Rep. 35, 31–62 (1991)
Ganesh, A.J., O’Connell, N.: A large deviation principle with queueing applications. Stoch. Stoch. Rep. 73(1–2), 25–35 (2002)
Ganesh, A., O’Connell, N., Wischik, D.: Big Queues. Lecture Notes in Mathematics, vol. 1838. Springer, Berlin (2004)
Habib, I.W., Saadawi, T.N.: Multimedia traffic characteristics in broadband networks. IEEE Commun. Mag. 30(7), 48–54 (1992)
Iglehart, D.L.: Limiting diffusion approximations for the many server queue and the repairman problem. J. Appl. Probab. 2, 429–441 (1965)
Kesidis, G., Walrand, J., Chang, C.-S.: Effective bandwidth for multiclass Markov fluids and other ATM sources. IEEE/ACM Trans. Netw. 1(4), 424–427 (1993)
Kulkarni, V., Rolski, T.: Fluid model driven by an Ornstein–Uhlenbeck process. Probab. Eng. Inform. Sci. 8, 403–417 (1994)
Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6, 223–240 (1978)
Ledoux, M.: Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. Henri Poincaré Probab. Stat. 28(2), 267–280 (1992)
Majewski, K.: Single class queueing networks with discrete and fluid customers on the time interval ℝ. Queueing Syst. 36(4), 405–435 (2000)
Majewski, K.: Large deviations for multi-dimensional reflected fractional Brownian motion. Stoch. Stoch. Rep. 75(4), 233–257 (2003). Corrigendum 76(5), 479 (2004)
Majewski, K.: Fractional Brownian heavy traffic approximations of multiclass feedforward queueing networks. Queueing Syst. 50(2–3), 199–230 (2005)
Majewski, K.: Large deviation properties of constant rate data streams sharing a buffer with long-range dependent traffic in critical loading. To appear in Adv. Appl. Probab. 39(2), June 2007
Majewski, K.: Sample path moderate deviations for a family of long-range dependent traffic and associated queue length processes. Stoch. 77(1), 81–107 (2005)
Majewski, K.: Sample path large deviations for multiclass feedforward queueing networks in critical loading. Ann. Appl. Probab. 16(4), 1893–1924 (2006)
Mandjes, M.: Rare event analysis of the state frequencies of a large number of Markov chains. Commun. Stat. Stoch. Models 15(3), 577–592 (1999)
Mandjes, M., Mannersalo, P.: Queueing systems fed by many exponential on-off sources: an infinite-intersection approach. Queueing Syst. 54, 5–20 (2006)
Mandjes, M., Ridder, A.: Optimal trajectory to overflow in a queue fed by a large number of sources. Queueing Syst. 31, 137–170 (1999)
Mannersalo, P., Norros, I.: A most probable path approach to queueing systems with general Gaussian input. Comput. Netw. 40(3), 399–411 (2002)
Martin-Löf, A.: Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Commun. Math. Phys. 32, 75–92 (1973)
Norros, I.: Busy periods of fractional Brownian storage: A large deviations approach. Adv. Perform. Anal. 2(1), 1–19 (1999)
Norros, I., Roberts, J.W., Simonian, A., Virtamo, J.T.: The superposition of variable bit rate sources in an ATM multiplexer. IEEE J. Sel. Areas Commun. 9(3), 378–387 (1991)
Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984)
Puhalskii, A.A.: Moderate deviations for queues in critical loading. Queueing Syst. 31, 359–392 (1999)
Ramanan, K., Dupuis, P.: Large deviation properties of data streams that share a buffer. Ann. Appl. Probab. 8(4), 1070–1129 (1998)
Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis: Queues, Communications and Computing. Chapman & Hall, New York (1995)
Simonian, A.: Stationary analysis of a fluid queue with input rate varying as an Ornstein–Uhlenbeck process. SIAM J. Appl. Math. 51(3), 828–842 (1991)
Simonian, A., Guibert, J.: Large deviations approximations for fluid queues fed by a large number of on/off sources. IEEE J. Sel. Areas Commun. 13(6), 1017–1027 (1995)
Sriram, K., Whitt, W.: Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE J. Sel. Areas Commun. SAC-4(6), 833–846 (1986)
Ward, A.R., Glynn, P.: Properties of the reflected Ornstein–Uhlenbeck process. Queueing Syst. 44(2), 109–123 (2003)
Weidmann, J.: Lineare Operatoren in Hilberträumen. B.G. Teubner, Stuttgart (1976)
Weiss, A.: A new technique for analyzing large traffic systems. Adv. Appl. Probab. 18, 506–532 (1986)
Wentzell, A.D.: Limit Theorems on Large Deviations for Markov Stochastic Processes. Mathematics and Its Applications, vol. 38. Kluwer Academic, Boston (1990). Originally published by Nauka Publishers, Moscow (1986), in Russian
Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Applications to Queues. Springer, New York (2001)
Williams, R.: An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst. 30, 5–25 (1998)
