Tăng cường mẫu bằng chiết xuất pha rắn để đạt được mức độ phần tri tỷ trong phân tích môi trường

Springer Science and Business Media LLC - Tập 82 - Trang 1139-1150 - 2019
Victor David1, Toma Galaon2, Elena Bacalum3
1Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
2National Research and Development Institute for Industrial Ecology-ECOIND, Bucharest, Romania
3University of Bucharest, Research Institute, ICUB, Bucharest, Romania

Tóm tắt

Xác định mức độ phần tri tỷ (ppq) của các chất ô nhiễm, ô nhiễm phụ, hoặc các loài nền trong các mẫu môi trường là một nhiệm vụ đầy thách thức đối với hóa học phân tích. Trong số đó, dioxin, axit perfluoroalkyl, thuốc trừ sâu organophosphate và organochlorine, thuốc diệt cỏ, và nitrosamine được phát hiện trong môi trường và do đó phải được xác định ở mức ppq. Các kỹ thuật phân tích đơn thuần không thể đạt đến những mức độ nồng độ này, và chúng chỉ có thể được áp dụng nếu có sự tăng cường mẫu. Bài tổng quan này dựa trên tài liệu báo cáo về các phương pháp phân tích dựa trên chiết xuất pha rắn hoặc các kỹ thuật liên quan được áp dụng để xác định mức độ ppq hoặc có giới hạn định lượng dưới mức phần tri tỷ (ppt). Một số khía cạnh quan trọng khác của quy trình phân tích, chẳng hạn như chuẩn hóa, độ chính xác, tỷ lệ phục hồi, độ không chắc chắn, các vật liệu tham chiếu được chứng nhận của ma trận môi trường, hoặc so sánh liên phòng thí nghiệm, được thảo luận trong bối cảnh nghiên cứu phân tích này.

Từ khóa

#phân tích môi trường #chiết xuất pha rắn #mức độ ppq #chất ô nhiễm #hóa học phân tích

Tài liệu tham khảo

Lindemann S, Simgen H (2014) Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer. Eur Phys J C 74:2746. https://doi.org/10.1140/epjc/s10052-014-2746-1 Hill MK (2010) Understanding environmental pollution, 3rd edn. Cambridge University Press, Cambridge, pp 9–21 Stefanakis AI, Baker JA (2015) A review of emerging contaminants in water: classification, sources and potential risks. In: McKeown EA (ed) Impact of water pollution on human health and environmental sustainability, Information science reference. IGI Global, Hershey, pp 55–81 Vercauteren J, Pérès C, Devos C, Sandra P, Vanhaecke F, Moens L (2001) Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas chromatography—ICP mass spectrometry. Anal Chem 73(7):1509–1514. https://doi.org/10.1021/ac000714s Camino-Sánchez FJ, Zafra-Gómez A, Ruiz-García J, Vílchez JL (2013) Screening and quantification of 65 organic pollutants in drinking water by stir bar sorptive extraction-gas chromatography-triple quadrupole mass spectrometry. Food Anal Methods 6(3):854–867. https://doi.org/10.1007/s12161-012-9495-2 Reiner EJ, Clement RE, Okey AB, Marvin CH (2006) Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal Bioanal Chem 386:791–806. https://doi.org/10.1007/s00216-006-0479-1 Kanan S, Samara F (2018) Dioxins and furans: a review from chemical and environmental perspectives. Trends Environ Anal Chem 17:1–13. https://doi.org/10.1016/j.teac.2017.12.001 Wardencki W, Katulski RJ, Stefański J, Namieśnik J (2008) The state of the art in the field of non-stationary instruments for the determination and monitoring of atmospheric pollutants. Crit Rev Anal Chem 38(4):259–268. https://doi.org/10.1080/10408340802378254 United States Environmental Protection Agency. National Primary Drinking Water Regulations: Ground Water and Drinking Water. 2018. http://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#one. Accessed Jan 2019 Lytle DA, Sorg T, Wang L, Chen A (2014) The accumulation of radioactive contaminants in drinking water distribution systems. Water Res 50:396–407. https://doi.org/10.1016/j.watres.2013.10.050 Kołacińska K, Chajduk E, Dudek J, Samczyński Z, Łokas E, Bojanowska-Czajka A, Trojanowicz M (2017) Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes. Talanta 169:216–226. https://doi.org/10.1016/j.talanta.2016.10.051 Quinto F, Golser R, Lagos M, Plaschke M, Schäfer T, Steier P, Geckeis H (2015) Accelerator mass spectrometry of actinides in ground- and seawater: an innovative method allowing for the simultaneous analysis of U, Np, Pu, Am, and Cm isotopes below ppq levels. Anal Chem 87(11):5766–5773. https://doi.org/10.1021/acs.analchem.5b00980 de la Guardia M, Garrigues S (2014) The social responsibility of environmental analysis. Trends Environ Anal Chem 3–4:7–13. https://doi.org/10.1016/j.teac.2014.09.001 Wilken M, Martin GD, Hescott TL, Mendyk KK, Fishman VN, Lamparski LL, Luksemburg WJ, Maier M, Sünderhauf W, Van Ryckeghem M, Neugebauer F, de Smet G (2008) Interlaboratory comparison of the determination of chlorinated dibenzo-p-dioxins and dibenzofurans according to regulatory methods EN 1948 and EPA 1613b. Chemosphere 73:S2–S6. https://doi.org/10.1016/j.chemosphere.2007.06.099 Konieczka P, Wolska L, Namiesnik J (2010) Quality problems in determination of organic compounds in environmental samples, such as PAHs and PCBs. Trends Anal Chem 29(7):706–717. https://doi.org/10.1016/j.trac.2010.03.012 Vautz W, Franzke J, Zampolli S, Elmi I, Liedtke S (2018) On the potential of ion mobility spectrometry coupled to GC pre-separation—a tutorial. Anal Chim Acta 1024:52–64. https://doi.org/10.1016/j.aca.2018.02.052 McKay AB, Perkins MJ, Field JA (2015) Large-volume injection LC–MS-MS methods for aqueous samples and organic extracts. LCGC North Am 33(1):54–68 Hutta M, Chalányová M, Halko R, Góra R, Rybár I, Pajchl M, Dokupilová S (2006) New approach to large-volume injection in reversed-phase high performance liquid chromatography: determination of atrazine and hydroxyatrazine in soil sample. J Sep Sci 29(13):1977–1987. https://doi.org/10.1002/jssc.200600049 David V, Galaon T, Aboul-Enein HY (2014) Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography. J Chromatogr A 1323:115–122. https://doi.org/10.1016/j.chroma.2013.11.014 Backe WJ (2015) An ultrasensitive (parts-per-quadrillion) and SPE-free method for the quantitative analysis of estrogens in surface water. Environ Sci Technol 49(24):14311–14318. https://doi.org/10.1021/acs.est.5b04949 Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217(16):2521–2532. https://doi.org/10.1016/j.chroma.2010.01.030 Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid-phase microextraction and perspective on future directions. Anal Chem 90(1):302–360. https://doi.org/10.1021/acs.analchem.7b04502 Gallego E, Roca FJ, Perales JF, Guardino X (2010) Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta 81(3):916–924. https://doi.org/10.1016/j.talanta.2010.01.037 Wen YY, Chen L, Li JH, Liu DY, Chen LX (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41. https://doi.org/10.1016/j.trac.2014.03.011 Medvedovici A, Bacalum E, David V (2018) Sample preparation for large scale bioanalytical studies based on liquid chromatographic technique. Biomed Chromatogr 32(1):e4137. https://doi.org/10.1002/bmc.4137 Lehotay SJ, Chen Y (2018) Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 410(22):5331–5351. https://doi.org/10.1007/s00216-018-1195-3 Zdolsek N, Kumric K, Kalijadis A, Trtic-Petrovic T (2017) Solid-phase extraction disk based on multiwalled carbon nanotubes for the enrichement of targeted pesticides from aqueous samples. J Sep Sci 40(7):1564–1571. https://doi.org/10.1002/jssc.201600957 Cuadros-Rodríguez L, Bagur-González MG, Sánchez-Viñas M, González-Casado A, Gómez-Sáez AM (2007) Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A 1158(1–2):33–46. https://doi.org/10.1016/j.chroma.2007.03.030 Vanatta LE, Coleman DE (2007) Calibration, uncertainty, and recovery in the chromatographic sciences. J Chromatogr A 1158(1–2):47–60. https://doi.org/10.1016/j.chroma.2007.02.040 Bielicka-Daszkiewicz K, Voelkel A (2009) Theoretical and experimental methods of determination the breakthrough volume of SPE sorbents. Talanta 80(2):614–621. https://doi.org/10.1016/j.talanta.2009.07.037 Bacalum E, Radulescu M, Iorgulescu EE, David V (2011) Breakthrough parameters of SPE procedure on C18 cartridges for some polar compounds. Rev Roum Chim 56(2):137–143 Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H (2008) Overcoming matrix effects in liquid chromatography-mass spectrometry. Anal Chem 80(23):9343–9348. https://doi.org/10.1021/ac8018312 Haidar Ahmad IA (2017) Necessary analytical skills and knowledge for identifying, understanding, and performing HPLC troubleshooting. Chromatograhia 80(5):705–730. https://doi.org/10.1007/s10337-016-3225-7 Taylor T (2015) The most common mistakes in solid-phase extraction. LCGC North Am 33(10):802–804 Eppe G, Van Cleuvenbergen R, Haug LS, Boulanger B, Becher G, De Pauw E (2008) Empirical relationship between precision and ultra-trace concentrations of PCDD/Fs and dioxin-like PCBs in biological matrices. Chemosphere 71:379–387. https://doi.org/10.1016/j.chemosphere.2007.08.046 Foley JP, Dorsey JG (1984) Clarification of the limit of detection in chromatography. Chromatographia 18(9):503–511. https://doi.org/10.1007/BF02267236 Moldoveanu SC, David V (2015) Modern sample preparation for chromatography. Elsevier, Amsterdam, pp 191–198 Namieśnik J (2001) Modern trends in monitoring and analysis of environmental pollutants. Pol J Environ Stud 10(3):127–140 Saadati N, Abdullah P, Zakaria Z, Tavakoli Sany SB, Rezayi M, Hassonizadeh H (2013) Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chem Cent J 7:63. https://doi.org/10.1186/1752-153X-7-63 Vander Heyden Y, Smeyers-Verbeke J (2007) Set-up and evaluation of interlaboratory studies. J Chromatogr A 1158(1–2):158–167. https://doi.org/10.1016/j.chroma.2007.02.053 van Nuijs ALN, Lai FY, Been F, Andres-Costa M et al (2018) Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: development of a quality control system. Trends Anal Chem 103:34–43. https://doi.org/10.1016/j.trac.2018.03.009 Ulberth F (2006) Certified reference materials for inorganic and organic contaminants in environmental matrices. Anal Bioanal Chem 386(4):1121–1136. https://doi.org/10.1007/s00216-006-0660-6 Chauhan SK, Gupta PK, Shukla A, Gangopadhyay S (2009) Recent developments of certified reference materials for road transportation. Environ Monit Assess 156(1–4):407–418. https://doi.org/10.1007/s10661-008-0493-1 Bercaru O, Gawlik BM, Ulberth F, Vandecasteele C (2003) Reference materials for the monitoring of the aquatic environment—a review with special emphasis on organic priority pollutants. J Environ Monit 5(4):697–705 Duewer DL, Lippa KA, Long SE, Murphy KE, Sharpless KE, Sniegoski LT, Welch MJ, Tani W, Umemoto M (2009) Demonstrating the comparability of certified reference materials. Anal Bioanal Chem 395(1):155–169. https://doi.org/10.1007/s00216-009-2949-8 Schimmel H, Zegers I (2015) Performance criteria for reference measurement procedures and reference materials. Clin Chem Lab Med 53(6):899–904. https://doi.org/10.1515/cclm-2015-0104 Wise SA, Poster DL, Kucklick JR, Keller JM, Vanderpol SS, Sander LC, Schantz MM (2006) Standard reference materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem 386(4):1153–1190. https://doi.org/10.1007/s00216-006-0719-4 Plotka-Wasylka J, Szczepanska N, de la Guardia M, Namiesnik J (2016) Modern trends in solid-phase extraction: new sorbent media. Trends Anal Chem 77:26–43. https://doi.org/10.1016/j.trac.2015.10.010 Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerda V (2016) Solid phase extraction of organic compounds: a critical review. Trends Anal Chem 80:655–667. https://doi.org/10.1016/j.trac.2015.08.014 Speltini A, Sturini M, Maraschi F, Profumo F (2016) Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ Anal Chem 10:11–23. https://doi.org/10.1016/j.teac.2016.03.001 Chang RR, Jarman WM, Hennings JA (1993) Sample cleanup by solid-phase extraction for the ultratrace determination of polychlorinated dibenzo-p-dioxins and dibenzofurans in biological samples. Anal Chem 65(18):2420–2427. https://doi.org/10.1021/ac00066a005 Martín-Esteban A (2016) Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trends Environ Anal Chem 9:8–14. https://doi.org/10.1016/j.teac.2016.01.001 Gilart N, Borrull F, Fontanals N, Marce RM (2014) Selective materials for solid-phase extraction in environmental analysis. Trends Environ Anal Chem 1:e8–e18. https://doi.org/10.1016/j.teac.2013.11.002 Valsecchi S, Polesello S, Mazzoni M, Rusconi M, Petrovic M (2015) On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends Environ Anal Chem 8:27–37. https://doi.org/10.1016/j.teac.2015.08.001 Medvedovici A, David V, David F, Sandra P (1998) Analysis of polyaromatic hydrocarbons in water samples, at ppt level, using on-line solid phase extraction-reversed phase liquid chromatography—fluorescence detection. Chem Anal (Warsaw) 43(1):47–56 Akiyama R, Takagai Y, Igarashi S (2004) Determination of lower sub ppt levels of environmental analytes using high-powered concentration system and high-performance liquid chromatography with fluorescence detection. Analyst 129(5):396–397. https://doi.org/10.1039/B403228D Rawa-Adkonis M, Wolska L, Przyjazny A, Namieśnik J (2006) Sources of errors associated with the determination of PAH and PCB analytes in water samples. Anal Lett 39(11):2317–2331. https://doi.org/10.1080/00032710600755793 Yazdanfar N, Shamsipur M, Ghambarian M, Esrafili A (2018) A highly sensitive dispersive microextraction method with magnetic carbon nanocomposites coupled with dispersive liquid–liquid microextraction and two miscible stripping solvents followed by GC–MS for quantification of 16 PAHs in environmental samples. Chromatographia 81(3):487–499. https://doi.org/10.1007/s10337-018-3469-5 Liu C, Yu L-Q, Zhao Y-T, Lv Y-K (2018) Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim Acta 185(7):342. https://doi.org/10.1007/s00604-018-2879-2 Crozier PW, Plomley JB, Matchuk L (2001) Trace level analysis of polycyclic aromatic hydrocarbons in surface waters by solid phase extraction (SPE) and gas chromatography-ion trap mass spectrometry (GC-ITMS). Analyst 126(11):1974–1979. https://doi.org/10.1039/B103723B Eichelberger JW, Behymer TD, Budde WL (1988) Methods for the determination of organic compounds in drinking water, Report No. EPA-600/4–88/03, US Environmental Protection Agency, Cincinnati, OH, pp 325–356 Cochran RE, Dongari N, Jeong H, Beránek J, Haddadi S, Shipp J, Kubátová A (2012) Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products. Anal Chim Acta 740:93–103. https://doi.org/10.1016/j.aca.2012.05.050 Casoni D, Petre J, David V, Sarbu C (2011) Prediction of pesticides chromatographic lipophilicity from the computational molecular descriptors. J Sep Sci 34(3):247–254. https://doi.org/10.1002/jssc.201000636 Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100. https://doi.org/10.1515/intox-2016-0012 Lacorte S, Ehresmann N, Barcelo D (1995) Stability of organophosphorus pesticides on disposable solid-phase extraction precolumns. Environ Sci Technol 29(11):2834–2841. https://doi.org/10.1021/es00011a020 Wang D, Weston DP, Lydy MJ (2009) Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Talanta 78(4–5):1345–1351. https://doi.org/10.1016/j.talanta.2009.02.012 Zhang H, Bayen S, Kelly BC (2015) Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography–triple quadrupole tandem mass spectrometry. Sci Total Environ 523:219–232. https://doi.org/10.1016/j.scitotenv.2015.04.012 Henriques Alves AC, Pontes MM, Gonçalves B, Bernardo MM, Mendes BS (2011) Determination of organophosphorous pesticides in the ppq range using a simple solid-phase extraction method combined with dispersive liquid-liquid microextraction. J Sep Sci 34(18):2475–2481. https://doi.org/10.1002/jssc.201100434 U.S. Environmental Protection Agency (2003) Preliminary risk assessment of the developmental toxicity associated with exposure to perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics, Risk Assessment Division Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342. https://doi.org/10.1021/es001834k Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38(2):373–380. https://doi.org/10.1021/es034727+ Barreca S, Busetto M, Vitelli M, Colzani L, Clerici L, Dellavedova P (2018) On-line solid-phase extraction LC-MS/MS: a rapid and valid method for the determination of perfluorinated compounds at sub ng·L– 1 level in natural water. J Chem. https://doi.org/10.1155/2018/3780825 Nobuyoshi Y, Kurunthachalam K, Sachi T, Yuichi H, Tsuyoshi O, Gert P, Toshitaka G (2004) Analysis of perfluorinated acids at parts-per-quadrillion in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol 38(21):5522–5528. https://doi.org/10.1021/es0492541 Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Toshitaka Gamo T (2005) A global survey of perfluorinated acids in oceans. Marine Poll Bull 51(8–12):658–666. https://doi.org/10.1016/j.marpolbul.2005.04.026 Ayala-Cabrera JF, Santos FJ, Moyano E (2018) Negative-ion atmospheric pressure ionisation of semi-volatile fluorinated compounds for ultra-high-performance liquid chromatography tandem mass spectrometry analysis. Anal Bioanal Chem 410(20):4913–4924. https://doi.org/10.1007/s00216-018-1138-z Bach C, Boiteux V, Hemard J, Colin A, Rosin C, Munoz JF, Dauchy X (2016) Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction gas chromatography/mass spectrometry. J Chromatogr A 1448:98–106. https://doi.org/10.1016/j.chroma.2016.04.025 Villaverde-de-Saa E, Racamonde I, Quintana JB, Rodil R, Cela R (2012) Ion-pair sorptive extraction of perfluorinated compounds from water with low-cost polymeric materials: polyethersulfone vs polydimethylsiloxane. Anal Chim Acta 740:50–57. https://doi.org/10.1016/j.aca.2012.06.027 Houde M, De Silva AO, Muir DCG, Robert J. Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45(19):7962–7973. https://doi.org/10.1021/es104326w Villagrasa M, López de Alda M, Barceló D (2006) Environmental analysis of fluorinated alkyl substances by liquid chromatography–(tandem) mass spectrometry: a review. Anal Bioanal Chem 386(4):953–972. https://doi.org/10.1007/s00216-006-0471-9 Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636(1–3):178–242. https://doi.org/10.1016/j.mrrev.2007.09.001 Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res 47(13):4430–4450. https://doi.org/10.1016/j.watres.2013.04.050 Nawrocki J, Andrzejewski P (2011) Nitrosamines and water. J Hazard Mater 189(1–2):1–18. https://doi.org/10.1016/j.jhazmat.2011.02.005 Sharma VK (2012) Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water—a review. Sep Purif Technol 88:1–10. https://doi.org/10.1016/j.seppur.2011.11.028 McDonald JA, Harden NB, Nghiem LD, Khan SJ (2012) Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry. Talanta 99:146–154. https://doi.org/10.1016/j.talanta.2012.05.032 Amayreh M, Chanbasha B, Alhooshani K, Mu’azu ND, Lee HK (2015) Determination of N-nitrosamines by automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometry. J Sep Sci 38(10):1741–1748. https://doi.org/10.1002/jssc.201401043 Ontario Ministry of Environment (2007) The determination of N-nitrosamines in water by gas chromatography-high resolution mass spectrometry (GC/HRMS), NITROSO-E3388, Toronto, Canada Environmental Protection US, Agency (2004) Method 521, Determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry (MS/MS), EPA/600/R-05/054, Cincinnati Galaon T, Cruceru L, Petre J, Pascu LF, Iancu VI, Niculescu M (2016) New LC-MS/MS method for the determination of eight nitrosamines in drinking water. J Environ Prot Ecol 17(1):74–82 Boyd JM, Hrudey SE, Richardson SD, Li XF (2011) Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. Trends Anal Chem 30(9):1410–1421. https://doi.org/10.1016/j.trac.2011.06.009 Planas C, Palacios O, Ventura F, Rivera J, Caixacha J (2008) Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS. Talanta 76(4):906–913. https://doi.org/10.1016/j.talanta.2008.04.060 Devos C, Vliegen M, Willaert B, David F, Moens L, Sandra P (2005) Automated headspace-solid-phase micro extraction-retention time locked-isotope dilution gas chromatography-mass spectrometry for the analysis of organotin compounds in water and sediment samples. J Chromatogr A 1079(1–2):408–414. https://doi.org/10.1016/j.chroma.2004.12.020 Devos C, David F, Sandra P (2012) A new validated analytical method for the determination of tributyltin in water samples at the quantification level set by the European Union. J Chromatogr A 1261:151–157. https://doi.org/10.1016/j.chroma.2012.07.072 Cole RF, Mills GA, Parker R, Bolam T, Birchenough A, Kröger S, Fones GR (2015) Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ Anal Chem 8:1–11. https://doi.org/10.1016/j.teac.2015.05.001 Watanabe E, Baba K, Eun H (2007) Simultaneous determination of neonicotinoid insecticides in agricultural samples by solid-phase extraction cleanup and liquid chromatography equipped with diode-array detection. J Agric Food Chem 55(10):3798–3804. https://doi.org/10.1021/jf063140m Wang W, Li Y, Wu Q, Wang C, Zang X, Wang Z (2012) Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC. Anal Methods 4:766–772. https://doi.org/10.1039/C2AY05734D Iancu VI, Radu GL (2018) Occurrence of neonicotinoids in waste water from the Bucharest treatment plant. Anal Methods 10:2691–2700. https://doi.org/10.1039/C8AY00510A Iancu VI, Galaon T, Niculescu M, Lehr CB (2017) Neonicotinoids detection by new LC-MS/MS method in Romanian surface waters. Rev Chim (Bucharest) 68(8):1716–1722 Cai Z, Sadagopa Ramanujam VM, Giblin DE, Gross ML, Spalding RF (1993) Determination of atrazine in water at low- and sub-parts-per-trillion levels by using solid-phase extraction and gas chromatography/high-resolution mass spectrometry. Anal Chem 65(1):21–26. https://doi.org/10.1021/ac00049a006 Loos R, Marinov D, Sanseverino I, Napierska D, Lettieri T (2018) Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, EUR 29173 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/614367 (JRC111198) Zuo Y, Zhang K, Zhou S (2013) Determination of estrogenic steroids and microbial and photochemical degradation of 17a-ethinylestradiol (EE2) in lake surface water, a case study. Environ Sci Process Impacts 15:1529–1535. https://doi.org/10.1039/C4AY00479E Ripolles C, Ibanez M, Sancho JV, Lopez J, Hernandez FJ F (2014) Determination of 17β-estradiol and 17α-ethinylestradiol in water at sub-ppt levels by liquid chromatography coupled to tandem mass spectrometry. Anal Methods 6:5028–5037. https://doi.org/10.1039/C4AY00479E Lee HB, Peart TE (1998) Determination of 17 beta-estradiol and its metabolites in sewage effluent by solid-phase extraction and gas chromatography/mass spectrometry. J AOAC Int 81(6):1209–1216 Ferguson PL, Iden CR, McElroy AE, Brownawell BJ (2001) Determination of steroid estrogens in wastewater by Iimmunoaffinity extraction coupled with HPLC-electrospray-MS. Anal Chem 73(16):3890–3895. https://doi.org/10.1021/ac010327y Zhang H, Henion J (1999) Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology. Anal Chem 71(18):3955–3964. https://doi.org/10.1021/ac990162h Jiménez JJ, Bernal JL, del Nozal MJ, Toribio L, Bernal J (2007) Use of SPE-GC/EIMS for residue analysis in wine elaborated from musts spiked with formulations of chlorpyriphos-methyl, methiocarb, dicofol, and cyproconazol. J Sep Sci 30(4):547–556. https://doi.org/10.1002/jssc.200600345 Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553(1–2):21–26. https://doi.org/10.1016/j.aca.2005.08.006 Mirzaei R, Yunesian M, Nasseri S, Gholami M, Jalilzadeh E, Shoeibi S, Bidshahi HS, Mesdaghinia A (2017) An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology—central composite design. J Environ Health Sci Eng 15:article21. https://doi.org/10.1186/s40201-017-0282-2 Wen Y, Ontanon I, Ferreira V, Lopez R (2018) Determination of ppq-levels of alkylmethoxypyrazines in wine by stirbar sorptive extraction combined with multidimensional gas chromatography-mass spectrometry. Food Chem 255:235–241. https://doi.org/10.1016/j.foodchem.2018.02.089