Salt-inclusion chalcogenides: Double functional moieties design strategy toward excellent nonlinear optical materials

Jiegou Huaxue - Tập 42 - Trang 100029 - 2023
Chao-Hong Xie1,2, Bin-Wen Liu1,3, Guo-Cong Guo1,3
1State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
2University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People’s Republic of China

Tài liệu tham khảo

Eaton, 1991, Nonlinear optical-materials, Science, 253, 281, 10.1126/science.253.5017.281 Chen, 1989, New nonlinear-optical crystal—LiB3O5, J. Opt. Soc. Am. B, 6, 616, 10.1364/JOSAB.6.000616 Chen, 1985, A new-type ultraviolet SHG crystal—β-BaB2O4, Sci. Sin. B, 28, 235 Miller, 1964, Optical second harmonic generation in piezoelectric crystals, Appl. Phys. Lett., 5, 17, 10.1063/1.1754022 Bierlein, 1989, Potassium titanyl phosphate—properties and new applications, J. Opt. Soc. Am. B, 6, 622, 10.1364/JOSAB.6.000622 Fan, 1984, AgGaS2 infrared parametric oscillator, Appl. Phys. Lett., 45, 313, 10.1063/1.95275 Boyd, 1972, Linear and nonlinear optical properties of some ternary selenides, Ieee J. Quantum Elect., 8, 900, 10.1109/JQE.1972.1076900 Boyd, 1971, Linear and nonlinear optical properties of ZnGeP2 and CdSe, Appl. Phys. Lett., 18, 301, 10.1063/1.1653673 Guo, 2017, Recent achievements on middle and far-infrared second-order nonlinear optical materials, Coord. Chem. Rev., 335, 44, 10.1016/j.ccr.2016.12.013 Liu, 2016, [A3X][Ga3PS8] (A = K, Rb; X = Cl, Br): promising IR non-linear optical materials exhibiting concurrently strong second-harmonic generation and high laser induced damage thresholds, Chem. Sci., 7, 6273, 10.1039/C6SC01907B Guo, 2009, A facile approach to hexanary chalcogenoborate featuring a 3-D chiral honeycomb-like open-framework constructed from rare-earth consolidating thiogallate-closo-dodecaborate, Chem. Commun., 4366, 10.1039/b906124j Yu, 2012, Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K), J. Am. Chem. Soc., 134, 2227, 10.1021/ja209711x Feng, 2014, Noncentrosymmetric chalcohalide NaBa4Ge3S10Cl with large band gap and IR NLO response, J. Mater. Chem. C, 2, 4590, 10.1039/C4TC00060A Yue, 2020, Salt-inclusion chalcogenides: an emerging class of IR nonlinear optical materials, Dalton Trans., 49, 14338, 10.1039/D0DT02971H Li, 2022, A rising type of second-order nonlinear optical materials, Eur. J. Inorg. Chem., 2022, 10.1002/ejic.202200419 Song, 2022, [ASr4Cl][Ge3S10] (A = Na, K) and [KBa4Cl][Ge3S10]: new salt-inclusion infrared nonlinear optical crystals with zero-dimensional [Ge3S9] clusters, Inorg. Chem. Front., 9, 5932, 10.1039/D2QI01689C Liu, 2017, Tailored synthesis of nonlinear optical quaternary chalcohalides: Ba4Ge3S9Cl2, Ba4Si3Se9Cl2 and Ba4Ge3Se9Cl2, Dalton Trans., 46, 2715, 10.1039/C6DT04294E Xing, 2020, Evaluation of nonlinear optical properties of quaternary chalcogenide halides Ba4Si3Se9Br2 and Ba4Ge3Se9Br2, J. Alloys Compd., 846, 156398, 10.1016/j.jallcom.2020.156398 Li, 2019, [Ge2S5(S2)]4−, a NLO-active unit leading to an asymmetric structure discovered in Li2Cs4Ge2S5(S2)Cl2: an experimental and theoretical study, Chem. Eur J., 25, 5440, 10.1002/chem.201901012 Gitzendanner, 1996, Synthesis and structure of a new quinary sulfide halide: LaCa2GeS4Cl3, Inorg. Chem., 35, 2623, 10.1021/ic951184z Liu, 2020, [ABa2Cl][Ga4S8] (A = Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering, J. Am. Chem. Soc., 142, 10641, 10.1021/jacs.0c04738 Pei, 2021, Superior infrared nonlinear optical performance achieved by synergetic functional motif and vacancy site modulations, Chem. Mater., 33, 8831, 10.1021/acs.chemmater.1c03046 Lin, 2012, Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12 (A = K, Rb, Cs), Chem. Mater., 24, 3406, 10.1021/cm301550a Pei, 2022, A new salt-inclusion chalcogenide exhibiting distinctive [Cd11In9S26]3– host framework and decent nonlinear optical performances, J. Alloys Compd., 902, 163656, 10.1016/j.jallcom.2022.163656 Ruiz-Fuertes, 2008, High-pressure effects on the optical-absorption edge of CdIn2S4, MgIn2S4, and MnIn2S4 thiospinels, J. Appl. Phys., 103, 10.1063/1.2887992 Liu, 2020, Li[LiCs2Cl][Ga3S6]: a nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance, Angew. Chem., Int. Ed., 59, 4856, 10.1002/anie.201912416 Liu, 2022, Broad transparency and wide band gap achieved in a magnetic infrared nonlinear optical chalcogenide by suppressing d-d transitions, Mater. Horiz., 9, 1513, 10.1039/D2MH00060A Guo, 2016, Synthesis, crystal structure and second-order nonlinear optical property of a novel pentanary selenide (K3I)[InB12(InSe4)3], Dalton Trans., 45, 10459, 10.1039/C6DT01602B Sun, 2017, A series of pentanary inorganic supramolecular sulfides (A3X)[MB12(MS4)3] (A = K, Cs; X = Cl, Br, I; M = Ga, In, Gd) featuring B12S12 clusters, Inorg. Chem. Front., 4, 1841, 10.1039/C7QI00396J Han, 2021, A series of pentanary salt-inclusion chalcogenoborates containing a B12Q12 (Q = S, Se) cluster exhibiting a Kleinman-forbidden frequency-doubling effect, Inorg. Chem., 60, 3375, 10.1021/acs.inorgchem.0c03780 Li, 2015, Strong IR NLO material Ba4MGa4Se10Cl2: highly improved laser damage threshold via dual ion substitution synergy, Adv. Opt. Mater., 3, 957, 10.1002/adom.201500038 Li, 2016, The effect of indium substitution on the structure and NLO properties of Ba6Cs2Ga10Se20Cl4, Inorg. Chem. Front., 3, 952, 10.1039/C6QI00104A Chen, 2020, Salt-inclusion chalcogenide [Ba4Cl2][ZnGa4S10]: rational design of an IR nonlinear optical material with superior comprehensive performance derived from AgGaS2, Chem. Mater., 32, 8012, 10.1021/acs.chemmater.0c03008 Zhang, 2022, Achieving a strong second harmonic generation response and a wide band gap in a Hg-based material, Inorg. Chem. Front., 9, 4075, 10.1039/D2QI00937D Liu, 2021, Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2 ][Ga5S10] (A = K, Rb, and Cs), CCS Chemistry, 3, 964, 10.31635/ccschem.020.202000268 Hu, 2018, Advantageous units in antimony sulfides: exploration and design of infrared nonlinear optical materials, ACS Appl. Mater. Inter., 10, 26413, 10.1021/acsami.8b08466 Ye, 2020, AMnAs3S6 (A = Cs, Rb): phase-matchable infrared nonlinear optical functional motif [As3S6]3– obtained via surfactant-thermal method, ACS Appl. Mater. Inter., 12, 53950, 10.1021/acsami.0c15812 Chu, 2019, A review on the development of infrared nonlinear optical materials with triangular anionic groups, J. Solid State Chem., 271, 266, 10.1016/j.jssc.2018.10.051 Yun, 2022, NaBaBS3: a promising infrared functional material with large birefringence induced by π-conjugated [BS3] units, Chem. Mater., 34, 5215, 10.1021/acs.chemmater.2c00869 Li, 2022, A2Zn3P4S13 (A = Rb and Cs): first infrared nonlinear optical materials with mixed thiophosphate functional motifs PS4 and P2S6, J. Mater. Chem. C, 10, 9146, 10.1039/D2TC01351G