Chiết xuất vi mô lỏng-lỏng có hỗ trợ muối của ion Cr(VI) sử dụng chất lỏng ion cho việc cô đặc trước khi xác định bằng quang phổ hấp thụ nguyên tử ngọn lửa

Microchimica Acta - Tập 176 - Trang 143-151 - 2011
Behrooz Majidi1, Farzaneh Shemirani1
1Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Tóm tắt

Chúng tôi báo cáo về phương pháp chiết xuất vi mô lỏng-lỏng có hỗ trợ muối để tách các phức hợp cation của ion Cr(VI) sử dụng chất lỏng ion (IL) thân nước 1-butyl-3-methylimidazolium tetrafluoroborat và kali hydro photphat. Đây là một kỹ thuật mới, đơn giản, không độc hại và hiệu quả cho quy trình trước xử lý mẫu, hiển thị hiệu suất chiết xuất cao và đại diện cho một nền tảng mới nơi mà Cr(VI) được phức hợp với 1,5-diphenylcarbazide (DPC) trong môi trường axit sulfuric. Phương pháp này đã được áp dụng để chiết xuất Cr(VI) dưới dạng phức hợp Cr(VI)-DPC trước khi xác định bằng quang phổ hấp thụ nguyên tử ngọn lửa. Ion Cr(III) cũng có thể được xác định bằng quy trình này sau khi được oxy hóa thành Cr(VI). Việc chiết xuất chủ yếu bị ảnh hưởng bởi lượng IL hòa tan trong nước, loại và lượng muối vô cơ, pH và nồng độ DPC. Đồ thị hiệu chuẩn là tuyến tính trong khoảng từ 3 đến 150 μg L−1 của Cr(VI), và giới hạn phát hiện là 1.25 μg L−1. Phương pháp này đã được áp dụng thành công trong việc phân tích và xác định nồng độ vết của Cr(III) và Cr(VI) trong các mẫu nước môi trường chứa hàm lượng muối hòa tan cao hoặc muối thực phẩm.

Từ khóa

#Cr(VI) #chiết xuất vi mô #chất lỏng ion #quan trắc môi trường #quang phổ hấp thụ nguyên tử ngọn lửa

Tài liệu tham khảo

Pena-Pereira F, Lavilla I, Bendicho C (2010) Liquid-phase microextraction approaches combined with atomic detection. Anal Chim Acta 669:1 Gupta M, Pillai AKKV, Singh A, Jain A, Verma KK (2011) Salt-assisted liquid-liquid microextraction for the determination of iodine in table salt by high-performance liquid chromatography-diode array detection. Food Chem 124:1741 Fang G, Zhang J, Lu J, Ma L, Wang S (2010) Preparation, characterization, and application of a new thiol-functionalized ionic liquid for highly selective extraction of Cd (II). Microchim Acta 171:305–311 Li ZJ, Chang J, Shan HX, Pan JM (2007) Advance of room temperature ionic liquid as solvent for extraction and separation. Rev Anal Chem 26:109 Ye CL, Zhou OX, Wang XM, Xiao JP (2007) Determination of phenols in environmental water samples by ionic liquid-based headspace liquid-phase microextraction coupled with high-performance liquid chromatography. J Sep Sci 30:42 Pena-Pereira F, Lavilla I, Bendicho C, Vidal L, Canals A (2009) Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection. Talanta 78:537 Aguilera-Herrador E, Lucena R, Cardenas S, Valcarcel M (2009) Ionic liquid-based single drop microextraction and room-temperature gas chromatography for on-site ion mobility spectrometric analysis. J Chrom A 1216:5580 Khani R, Shemirani F, Majidi B (2011) Combination of dispersive liquid-liquid microextraction and flame atomic absorption spectrometry for preconcentration and determination of copper in water samples. Desalination 266:238 Yousefi SR, Ahmadi SJ (2011) Development a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt combined with flame atomic absorption spectrometry using microsample introduction system for preconcentration and determination of cobalt in water and saline samples. Microchim Acta 172:75–82 Vaezzadeh M, Shemirani F, Majidi B (2010) Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples. Food Chem Toxicol 48:1455 Zeeb M, Sadeghi M (2011) Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Microchim Acta. doi:10.1007/s00604-011-0653-9 Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634:186 Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 15:6632 Pei YC, Wang JJ, Liu L, Wu K, Zhao Y (2007) Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J Chem Eng Data 52:2026 Ventura SPM, Neves C, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP (2009) Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 113:9304 Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64 Langard S, Norseth T, Friberg L et al (eds) (1990) Handbook on the toxicology of metals, vol. II, specific metals, 2nd edn. Elsevier, Amsterdam, p 185 Chen S, Zhu L, Lu D, Cheng X, Zhou X (2010) Separation and chromium speciation by single-wall carbon nanotubes microcolumn and inductively coupled plasma mass spectrometry. Microchim Acta 169:123–128 Yıldız Z, Arslan G, Tor A (2011) Preconcentrative separation of chromium(III) species from chromium(VI) by cloud point extraction and determination by flame atomic absorption spectrometry. Microchim Acta 174:399–405 Marcus Y (1991) Thermodynamics of solvation of solvation of ions.5. Gibbs free energy of hydration 298.15-K. J Chem Soc Faraday Trans 87:2995 Hua L, Chan YC, Wu YP, Wu BY (2009) The determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations. J Hazard Mater 163:1360 Ana FMC, Mara GF, Carmen SRF, Armando JDS, João APC (2010) Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Sep Purif Technol 75:39 Chen W, Zhong GP, Zhou ZD, Wu P, Hou XD (2005) Automation of liquid-liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples. Anal Sci 21:1189 Tunceli A, Turker AR (2002) Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS. Talanta 57:1199 Maltez HF, Carasek E (2005) Chromium speciation and preconcentration using zirconium(IV) and zirconium(IV) phosphate chemically immobilized onto silica gel surface using a flow system and FAAS. Talanta 65:537 Paleologos EK, Stalikas CD, Tzouwara-Karayanni SM, Pilidis GA, Karayannis MI (2000) Micelle-mediated methodology for speciation of chromium by flame atomic absorption spectrometry. J Anal At Spectrom 15:287 Matos GD, dos Reis EB, Costa ACS, Ferreira SLC (2009) Speciation of chromium in river water samples contaminated with leather effluents by flame atomic absorption spectrometry after separation/preconcentration by cloud point extraction. Microchem J 92:135 Tang AN, Jiang DQ, Jiang Y, Wang SW, Yan XP (2004) Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. Microchim Acta 1036:183 Chen H, Du P, Chen J, Hu SH, Li SQ, Liu HL (2010) Separation and preconcentration system based on ultrasonic probe-assisted ionic liquid dispersive liquid liquid microextraction for determination trace amount of chromium(VI) by electrothermal atomic absorption spectrometry. Talanta 81:176 Hemmatkhah P, Bidari A, Jafarvand S, Hosseini MRM, Assadi Y (2009) Speciation of chromium in water samples using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry. Microchim Acta 166:69 Abkenar SD, Hosseini M, Dahaghin Z, Salavati-Niasari M, Jamali MR (2010) Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry. Bull Kor Chem Soc 31:2813