Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bäck, 1996
Blum, 2008
Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J Global Optim, 11, 341, 10.1023/A:1008202821328
Rechenberg, 1973, 104
Fogel, 1966
Simon, 2008, Biogeography-based optimization, Evol Comput IEEE Trans, 12, 702, 10.1109/TEVC.2008.919004
Colorni, 1991, Distributed optimization by ant colonies, 134
Eberhart, 1995, A new optimizer using particle swarm theory, 39
Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J Global Optim, 39, 459, 10.1007/s10898-007-9149-x
Yang, 2009, Cuckoo search via Lévy flights, 210
Yang, 2010, A new metaheuristic bat-inspired algorithm, 65
Kumar, 2017, Grey wolf algorithm-based clustering technique, J Intell Syst, 26, 153, 10.1515/jisys-2014-0137
Aswani, 2016, A novel approach to outlier detection using modified grey wolf optimization and k-nearest neighbors algorithm, Indian J Sci Technol, 9, 10.17485/ijst/2016/v9i44/105161
Kaveh, 2013, A new optimization method: dolphin echolocation, Adv Eng Software, 59, 53, 10.1016/j.advengsoft.2013.03.004
Mirjalili, 2016, The whale optimization algorithm, Adv Eng Software, 95, 51, 10.1016/j.advengsoft.2016.01.008
Pan, 2012, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl Based Syst, 26, 69, 10.1016/j.knosys.2011.07.001
Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201
Kumar, 2015, A hybrid approach for data clustering using expectation-maximization and parameter adaptive harmony search algorithm, 61
Davis, 1991, Bit-climbing, representational bias, and test suite design, 18
Lourenço, 2001
Kirkpatrick, 1983, Optimization by simmulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Caporossi, 2016, Variable neighborhood search, 77
Alsheddy, 2016, Guided local search, 1
Wolpert, 1997, No free lunch theorems for optimization, Evol Comput IEEE Trans, 1, 67, 10.1109/4235.585893
Yao, 1993, A review of evolutionary artificial neural networks, Int J Intell Syst, 8, 539, 10.1002/int.4550080406
Coello Coello, 2000, Constraint-handling using an evolutionary multiobjective optimization technique, Civil Eng Syst, 17, 319, 10.1080/02630250008970288
Boussaïd, 2013, A survey on optimization metaheuristics, Inf Sci, 237, 82, 10.1016/j.ins.2013.02.041
Coello, 2009, Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored, Front Comput Sci China, 3, 18, 10.1007/s11704-009-0005-7
Ngatchou, 2005, Pareto multi objective optimization, 84
Zhou, 2011, Multiobjective evolutionary algorithms: a survey of the state of the art, Swarm Evol Comput, 1, 32, 10.1016/j.swevo.2011.03.001
Tan, 2009, Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization, Eur J Oper Res, 197, 701, 10.1016/j.ejor.2008.07.025
Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun Nonlinear Sci Numer Simul, 17, 4831, 10.1016/j.cnsns.2012.05.010
Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech, 213, 267, 10.1007/s00707-009-0270-4
Formato, 2008, Central force optimization: a new nature inspired computational framework for multidimensional search and optimization, 221
Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput Struct, 112–113, 283, 10.1016/j.compstruc.2012.09.003
Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput Aided Des, 43, 303, 10.1016/j.cad.2010.12.015
Dai, 2007, Seeker optimization algorithm, 167
Moosavian, 2014, Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks, Swarm Evol Comput, 17, 14, 10.1016/j.swevo.2014.02.002
Sadollah, 2013, Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems, Appl Soft Comput, 13, 2592, 10.1016/j.asoc.2012.11.026
Branke, 2001, Guidance in evolutionary multi-objective optimization, Adv Eng Software, 32, 499, 10.1016/S0965-9978(00)00110-1
Das, 1998, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J Optim, 8, 631, 10.1137/S1052623496307510
Kim, 2005, Adaptive weighted-sum method for bi-objective optimization: pareto front generation, Struct Multidiscip Optim, 29, 149, 10.1007/s00158-004-0465-1
Messac, 2002, Generating well-distributed sets of Pareto points for engineering design using physical programming, Optim Eng, 3, 431, 10.1023/A:1021179727569
Parsopoulos, 2002, Particle swarm optimization method in multiobjective problems, 603
Deb, 2012, Advances in evolutionary multi-objective optimization, 1
Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, Evol Comput IEEE Trans, 11, 712, 10.1109/TEVC.2007.892759
Mezura-Montes, 2008, Multi-objective optimization using differential evolution: a survey of the state-of-the-art, 173
Kumar, 2015, Differential search algorithm for multiobjective problems, Procedia Comput Sci, 48, 22, 10.1016/j.procs.2015.04.105
Sarker, 2004, Differential evolution for solving multiobjective optimization problems, Asia Pac J Oper Res, 21, 225, 10.1142/S0217595904000217
Abbass, 2001, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, 971
Coello, 2002, MOPSO: a proposal for multiple objective particle swarm optimization, 1051
Knowles, 2000, Approximating the nondominated front using the Pareto archived evolution strategy, Evol Comput, 8, 149, 10.1162/106365600568167
Liu, 2008, On solving multiobjective bin packing problems using evolutionary particle swarm optimization, Eur J Oper Res, 190, 357, 10.1016/j.ejor.2007.06.032
Santana, 2009, A multiple objective particle swarm optimization approach using crowding distance and roulette wheel, 237
Tripathi, 2007, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Inf Sci, 177, 5033, 10.1016/j.ins.2007.06.018
Raquel, 2005, An effective use of crowding distance in multiobjective particle swarm optimization, 257
Sierra, 2005, Improving PSO-based multi-objective optimization using crowding, mutation and∈-dominance, 505
Mostaghim, 2003, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), 26
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, Evol Comput IEEE Trans, 6, 182, 10.1109/4235.996017
Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849
Mirjalili, 2015, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl Based Syst, 89, 228, 10.1016/j.knosys.2015.07.006
Mirjalili, 2015, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput Appl, 1
Mirjalili, 2015, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput Appl, 1
Mirjalili, 2016, SCA: a sine cosine algorithm for solving optimization problems, Knowl Based Syst, 10.1016/j.knosys.2015.12.022
Anderson, 1980, Communication between individuals in salp chains II. physiology, Proc R Soc Lond B, 210, 559, 10.1098/rspb.1980.0153
Andersen, 1986, A model of the population dynamics of salps in coastal waters of the Ligurian Sea, J Plankton Res, 8, 1091, 10.1093/plankt/8.6.1091
Henschke, 2015, Population drivers of a Thalia democratica swarm: insights from population modelling, J Plankton Res, 10.1093/plankt/fbv024
Coello, 2004, Handling multiple objectives with particle swarm optimization, Evol Comput IEEE Trans, 8, 256, 10.1109/TEVC.2004.826067
Digalakis, 2001, On benchmarking functions for genetic algorithms, Int J Comput Math, 77, 481, 10.1080/00207160108805080
M. Molga and C. Smutnicki, “Test functions for optimization needs,” 2005.
Yang, 2010
Kumar, 2012, Effect of harmony search parameters’ variation in clustering, Procedia Technol, 6, 265, 10.1016/j.protcy.2012.10.032
Kumar, 2016, Automatic data clustering using parameter adaptive harmony search algorithm and its application to image segmentation, J Intell Syst, 25, 595, 10.1515/jisys-2015-0004
Kumar, 2014, Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J Comput Sci, 5, 144, 10.1016/j.jocs.2013.12.001
Kumar, 2014, Variance-based harmony search algorithm for unimodal and multimodal optimization problems with application to clustering, Cybern Syst, 45, 486, 10.1080/01969722.2014.929349
Kumar, 2014, Clustering using modified harmony search algorithm, Int J Comput Intell Stud 2, 3, 113, 10.1504/IJCISTUDIES.2014.062726
N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff, "COCO: a platform for comparing continuous optimizers in a black-box setting," arXiv preprint arXiv:1603.08785, 2016.
Hansen, 2010, Real-parameter black-box optimization benchmarking 2010: experimental setup
Finck, 2010
Zitzler, 2000, Comparison of multiobjective evolutionary algorithms: empirical results, Evol Comput, 8, 173, 10.1162/106365600568202
Zhang, 2008, Multiobjective optimization test instances for the CEC 2009 special session and competition, 264
Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng Comput, 29, 17, 10.1007/s00366-011-0241-y
Zhang, 2008, Differential evolution with dynamic stochastic selection for constrained optimization, Inf Sci, 178, 3043, 10.1016/j.ins.2008.02.014
Liu, 2010, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl Soft Comput, 10, 629, 10.1016/j.asoc.2009.08.031
Ray, 2001, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng Optim, 33, 735, 10.1080/03052150108940941
Tsai, 2005, Global optimization of nonlinear fractional programming problems in engineering design, Eng Optim, 37, 399, 10.1080/03052150500066737
Wang, 2014, Chaotic Krill Herd algorithm, Inf Sci
Carlos, 2000, Constraint-handling using an evolutionary multiobjective optimization technique, Civil Eng Syst, 17, 319, 10.1080/02630250008970288
Deb, 1991, Optimal design of a welded beam via genetic algorithms, AIAA J, 29, 2013, 10.2514/3.10834
Deb, 2000, An efficient constraint handling method for genetic algorithms, Comput Method Appl Mech Eng, 186, 311, 10.1016/S0045-7825(99)00389-8
Krohling, 2006, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, Syst Man Cybern Part B IEEE Trans, 36, 1407, 10.1109/TSMCB.2006.873185
Lee, 2005, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput Methods Appl Mech Eng, 194, 3902, 10.1016/j.cma.2004.09.007
Ragsdell, 1976, Optimal design of a class of welded structures using geometric programming, ASME J Eng Ind, 98, 1021, 10.1115/1.3438995
He, 2007, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng Appl Artif Intell, 20, 89, 10.1016/j.engappai.2006.03.003
Coello Coello, 2002, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput Method Appl Mech Eng, 191, 1245, 10.1016/S0045-7825(01)00323-1
Coello Coello, 2002, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv Eng Inf, 16, 193, 10.1016/S1474-0346(02)00011-3
Siddall, 1972
Wang, 2003, Adaptive response surface method using inherited latin hypercube design points, J Mech Des, 125, 210, 10.1115/1.1561044
Cheng, 2014, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput Struct, 139, 98, 10.1016/j.compstruc.2014.03.007
Chickermane, 1996, Structural optimization using a new local approximation method, Int J Numer Methods Eng, 39, 829, 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
Arora, 2004
Belegundu, 1983, Study of mathematical programming methods for structural optimization, Diss Abstr Int Part B, 43, 1983
Yang, 2011
Mezura-Montes, 2008, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int J Gen Syst, 37, 443, 10.1080/03081070701303470
Coello Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput Ind, 41, 113, 10.1016/S0166-3615(99)00046-9
Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput Struct, 112, 283, 10.1016/j.compstruc.2012.09.003
Mahdavi, 2007, An improved harmony search algorithm for solving optimization problems, Appl Math Comput, 188, 1567
Li, 2007, A heuristic particle swarm optimizer for optimization of pin connected structures, Comput Struct, 85, 340, 10.1016/j.compstruc.2006.11.020
Drela, 1989, XFOIL: An analysis and design system for low Reynolds number airfoils, 1
Sederberg, 1986, Free-form deformation of solid geometric models, 151
B.M. Pinkebtom, "The characteristics of; f 8; related airfoil sections from tests in the variable-density wind tunnel," 1933.
Mirjalili, 2015, Multi-objective optimisation of marine propellers, Procedia Comput Sci, 51, 2247, 10.1016/j.procs.2015.05.504
Carlton, 2012
Zeng, 2012, Blade section design of marine propellers with maximum cavitation inception speed, J Hydrodyn Ser. B, 24, 65, 10.1016/S1001-6058(11)60220-5
Epps, 2009, OpenProp: an open-source parametric design and analysis tool for propellers, 104