Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems

Advances in Engineering Software - Tập 114 - Trang 163-191 - 2017
Seyedali Mirjalili1, Amir H. Gandomi2,3, Seyedeh Zahra Mirjalili4, Shahrzad Saremi1, Hossam Faris5, Seyed Mohammad Mirjalili6
1Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia
2BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 488241, USA
3School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA,
4School of Electrical Engineering and Computing University of Newcastle, Callaghan, NSW 2308, Australia
5Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
6Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec H3G1M8, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bäck, 1996

Blum, 2008

Goldberg, 1988, Genetic algorithms and machine learning, Mach Learn, 3, 95, 10.1023/A:1022602019183

Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J Global Optim, 11, 341, 10.1023/A:1008202821328

Rechenberg, 1973, 104

Fogel, 1966

Yao, 1999, Evolutionary programming made faster, Evol Comput IEEE Trans, 3, 82, 10.1109/4235.771163

Simon, 2008, Biogeography-based optimization, Evol Comput IEEE Trans, 12, 702, 10.1109/TEVC.2008.919004

Colorni, 1991, Distributed optimization by ant colonies, 134

Eberhart, 1995, A new optimizer using particle swarm theory, 39

Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J Global Optim, 39, 459, 10.1007/s10898-007-9149-x

Yang, 2009, Cuckoo search via Lévy flights, 210

Yang, 2010, Firefly algorithm, Eng Optim, 221, 10.1002/9780470640425.ch17

Yang, 2010, A new metaheuristic bat-inspired algorithm, 65

Mirjalili, 2014, Grey wolf optimizer, Adv Eng Softw, 69, 46, 10.1016/j.advengsoft.2013.12.007

Kumar, 2017, Grey wolf algorithm-based clustering technique, J Intell Syst, 26, 153, 10.1515/jisys-2014-0137

Aswani, 2016, A novel approach to outlier detection using modified grey wolf optimization and k-nearest neighbors algorithm, Indian J Sci Technol, 9, 10.17485/ijst/2016/v9i44/105161

Kaveh, 2013, A new optimization method: dolphin echolocation, Adv Eng Software, 59, 53, 10.1016/j.advengsoft.2013.03.004

Mirjalili, 2016, The whale optimization algorithm, Adv Eng Software, 95, 51, 10.1016/j.advengsoft.2016.01.008

Pan, 2012, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl Based Syst, 26, 69, 10.1016/j.knosys.2011.07.001

Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201

Kumar, 2015, A hybrid approach for data clustering using expectation-maximization and parameter adaptive harmony search algorithm, 61

Glover, 1989, Tabu search-part I, ORSA J Comput, 1, 190, 10.1287/ijoc.1.3.190

Davis, 1991, Bit-climbing, representational bias, and test suite design, 18

Lourenço, 2001

Kirkpatrick, 1983, Optimization by simmulated annealing, Science, 220, 671, 10.1126/science.220.4598.671

Caporossi, 2016, Variable neighborhood search, 77

Alsheddy, 2016, Guided local search, 1

Wolpert, 1997, No free lunch theorems for optimization, Evol Comput IEEE Trans, 1, 67, 10.1109/4235.585893

Yao, 1993, A review of evolutionary artificial neural networks, Int J Intell Syst, 8, 539, 10.1002/int.4550080406

Coello Coello, 2000, Constraint-handling using an evolutionary multiobjective optimization technique, Civil Eng Syst, 17, 319, 10.1080/02630250008970288

Boussaïd, 2013, A survey on optimization metaheuristics, Inf Sci, 237, 82, 10.1016/j.ins.2013.02.041

Coello, 2009, Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored, Front Comput Sci China, 3, 18, 10.1007/s11704-009-0005-7

Ngatchou, 2005, Pareto multi objective optimization, 84

Zhou, 2011, Multiobjective evolutionary algorithms: a survey of the state of the art, Swarm Evol Comput, 1, 32, 10.1016/j.swevo.2011.03.001

Tan, 2009, Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization, Eur J Oper Res, 197, 701, 10.1016/j.ejor.2008.07.025

Wang, 2014, Chaotic krill herd algorithm, Inf Sci, 274, 17, 10.1016/j.ins.2014.02.123

Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun Nonlinear Sci Numer Simul, 17, 4831, 10.1016/j.cnsns.2012.05.010

Wang, 2014, Stud krill herd algorithm, Neurocomputing, 128, 363, 10.1016/j.neucom.2013.08.031

Rashedi, 2009, GSA: a gravitational search algorithm, Inf Sci, 179, 2232, 10.1016/j.ins.2009.03.004

Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech, 213, 267, 10.1007/s00707-009-0270-4

Formato, 2008, Central force optimization: a new nature inspired computational framework for multidimensional search and optimization, 221

Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput Struct, 112–113, 283, 10.1016/j.compstruc.2012.09.003

Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput Aided Des, 43, 303, 10.1016/j.cad.2010.12.015

Dai, 2007, Seeker optimization algorithm, 167

Moosavian, 2014, Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks, Swarm Evol Comput, 17, 14, 10.1016/j.swevo.2014.02.002

Sadollah, 2013, Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems, Appl Soft Comput, 13, 2592, 10.1016/j.asoc.2012.11.026

Branke, 2001, Guidance in evolutionary multi-objective optimization, Adv Eng Software, 32, 499, 10.1016/S0965-9978(00)00110-1

Das, 1998, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J Optim, 8, 631, 10.1137/S1052623496307510

Kim, 2005, Adaptive weighted-sum method for bi-objective optimization: pareto front generation, Struct Multidiscip Optim, 29, 149, 10.1007/s00158-004-0465-1

Messac, 2002, Generating well-distributed sets of Pareto points for engineering design using physical programming, Optim Eng, 3, 431, 10.1023/A:1021179727569

Parsopoulos, 2002, Particle swarm optimization method in multiobjective problems, 603

Deb, 2012, Advances in evolutionary multi-objective optimization, 1

Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, Evol Comput IEEE Trans, 11, 712, 10.1109/TEVC.2007.892759

Mezura-Montes, 2008, Multi-objective optimization using differential evolution: a survey of the state-of-the-art, 173

Kumar, 2015, Differential search algorithm for multiobjective problems, Procedia Comput Sci, 48, 22, 10.1016/j.procs.2015.04.105

Sarker, 2004, Differential evolution for solving multiobjective optimization problems, Asia Pac J Oper Res, 21, 225, 10.1142/S0217595904000217

Abbass, 2001, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, 971

Coello, 2002, MOPSO: a proposal for multiple objective particle swarm optimization, 1051

Knowles, 2000, Approximating the nondominated front using the Pareto archived evolution strategy, Evol Comput, 8, 149, 10.1162/106365600568167

Liu, 2008, On solving multiobjective bin packing problems using evolutionary particle swarm optimization, Eur J Oper Res, 190, 357, 10.1016/j.ejor.2007.06.032

Santana, 2009, A multiple objective particle swarm optimization approach using crowding distance and roulette wheel, 237

Tripathi, 2007, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Inf Sci, 177, 5033, 10.1016/j.ins.2007.06.018

Raquel, 2005, An effective use of crowding distance in multiobjective particle swarm optimization, 257

Sierra, 2005, Improving PSO-based multi-objective optimization using crowding, mutation and∈-dominance, 505

Mostaghim, 2003, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), 26

Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, Evol Comput IEEE Trans, 6, 182, 10.1109/4235.996017

Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849

Mirjalili, 2015, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl Based Syst, 89, 228, 10.1016/j.knosys.2015.07.006

Mirjalili, 2015, The ant lion optimizer, Adv Eng Softw, 83, 80, 10.1016/j.advengsoft.2015.01.010

Mirjalili, 2015, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput Appl, 1

Mirjalili, 2015, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput Appl, 1

Mirjalili, 2016, SCA: a sine cosine algorithm for solving optimization problems, Knowl Based Syst, 10.1016/j.knosys.2015.12.022

Madin, 1990, Aspects of jet propulsion in salps, Can J Zool, 68, 765, 10.1139/z90-111

Anderson, 1980, Communication between individuals in salp chains II. physiology, Proc R Soc Lond B, 210, 559, 10.1098/rspb.1980.0153

Andersen, 1986, A model of the population dynamics of salps in coastal waters of the Ligurian Sea, J Plankton Res, 8, 1091, 10.1093/plankt/8.6.1091

Henschke, 2015, Population drivers of a Thalia democratica swarm: insights from population modelling, J Plankton Res, 10.1093/plankt/fbv024

Coello, 2004, Handling multiple objectives with particle swarm optimization, Evol Comput IEEE Trans, 8, 256, 10.1109/TEVC.2004.826067

Digalakis, 2001, On benchmarking functions for genetic algorithms, Int J Comput Math, 77, 481, 10.1080/00207160108805080

M. Molga and C. Smutnicki, “Test functions for optimization needs,” 2005.

Yang, 2010

Kumar, 2012, Effect of harmony search parameters’ variation in clustering, Procedia Technol, 6, 265, 10.1016/j.protcy.2012.10.032

Kumar, 2016, Automatic data clustering using parameter adaptive harmony search algorithm and its application to image segmentation, J Intell Syst, 25, 595, 10.1515/jisys-2015-0004

Kumar, 2014, Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J Comput Sci, 5, 144, 10.1016/j.jocs.2013.12.001

Kumar, 2014, Variance-based harmony search algorithm for unimodal and multimodal optimization problems with application to clustering, Cybern Syst, 45, 486, 10.1080/01969722.2014.929349

Kumar, 2014, Clustering using modified harmony search algorithm, Int J Comput Intell Stud 2, 3, 113, 10.1504/IJCISTUDIES.2014.062726

N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff, "COCO: a platform for comparing continuous optimizers in a black-box setting," arXiv preprint arXiv:1603.08785, 2016.

Hansen, 2010, Real-parameter black-box optimization benchmarking 2010: experimental setup

Finck, 2010

Zitzler, 2000, Comparison of multiobjective evolutionary algorithms: empirical results, Evol Comput, 8, 173, 10.1162/106365600568202

Zhang, 2008, Multiobjective optimization test instances for the CEC 2009 special session and competition, 264

Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng Comput, 29, 17, 10.1007/s00366-011-0241-y

Zhang, 2008, Differential evolution with dynamic stochastic selection for constrained optimization, Inf Sci, 178, 3043, 10.1016/j.ins.2008.02.014

Liu, 2010, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl Soft Comput, 10, 629, 10.1016/j.asoc.2009.08.031

Ray, 2001, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng Optim, 33, 735, 10.1080/03052150108940941

Tsai, 2005, Global optimization of nonlinear fractional programming problems in engineering design, Eng Optim, 37, 399, 10.1080/03052150500066737

Wang, 2014, Chaotic Krill Herd algorithm, Inf Sci

Carlos, 2000, Constraint-handling using an evolutionary multiobjective optimization technique, Civil Eng Syst, 17, 319, 10.1080/02630250008970288

Deb, 1991, Optimal design of a welded beam via genetic algorithms, AIAA J, 29, 2013, 10.2514/3.10834

Deb, 2000, An efficient constraint handling method for genetic algorithms, Comput Method Appl Mech Eng, 186, 311, 10.1016/S0045-7825(99)00389-8

Krohling, 2006, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, Syst Man Cybern Part B IEEE Trans, 36, 1407, 10.1109/TSMCB.2006.873185

Lee, 2005, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput Methods Appl Mech Eng, 194, 3902, 10.1016/j.cma.2004.09.007

Ragsdell, 1976, Optimal design of a class of welded structures using geometric programming, ASME J Eng Ind, 98, 1021, 10.1115/1.3438995

He, 2007, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng Appl Artif Intell, 20, 89, 10.1016/j.engappai.2006.03.003

Coello Coello, 2002, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput Method Appl Mech Eng, 191, 1245, 10.1016/S0045-7825(01)00323-1

Coello Coello, 2002, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv Eng Inf, 16, 193, 10.1016/S1474-0346(02)00011-3

Siddall, 1972

Wang, 2003, Adaptive response surface method using inherited latin hypercube design points, J Mech Des, 125, 210, 10.1115/1.1561044

Cheng, 2014, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput Struct, 139, 98, 10.1016/j.compstruc.2014.03.007

Chickermane, 1996, Structural optimization using a new local approximation method, Int J Numer Methods Eng, 39, 829, 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U

Arora, 2004

Belegundu, 1983, Study of mathematical programming methods for structural optimization, Diss Abstr Int Part B, 43, 1983

Yang, 2011

Mezura-Montes, 2008, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int J Gen Syst, 37, 443, 10.1080/03081070701303470

Coello Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput Ind, 41, 113, 10.1016/S0166-3615(99)00046-9

Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput Struct, 112, 283, 10.1016/j.compstruc.2012.09.003

Mahdavi, 2007, An improved harmony search algorithm for solving optimization problems, Appl Math Comput, 188, 1567

Li, 2007, A heuristic particle swarm optimizer for optimization of pin connected structures, Comput Struct, 85, 340, 10.1016/j.compstruc.2006.11.020

Drela, 1989, XFOIL: An analysis and design system for low Reynolds number airfoils, 1

Sederberg, 1986, Free-form deformation of solid geometric models, 151

B.M. Pinkebtom, "The characteristics of; f 8; related airfoil sections from tests in the variable-density wind tunnel," 1933.

Mirjalili, 2015, Multi-objective optimisation of marine propellers, Procedia Comput Sci, 51, 2247, 10.1016/j.procs.2015.05.504

Carlton, 2012

Zeng, 2012, Blade section design of marine propellers with maximum cavitation inception speed, J Hydrodyn Ser. B, 24, 65, 10.1016/S1001-6058(11)60220-5

Epps, 2009, OpenProp: an open-source parametric design and analysis tool for propellers, 104