Sagittal spinopelvic alignment in ambulatory persons with cerebral palsy

Stephen Plachta1, Sonya Levine2, Karen A. Carlberg3, Peter Cirrincione4, Michael G. Vitale5, Lawrence G. Lenke6, Benjamin D. Roye5, Paulo Selber7
1Columbia University Irving Medical Center, 3959 Broadway, 8th Floor North, New York, NY, 10032, USA
2Columbia University Irving Medical Center, 1420 Locust St. #27Q, Philadelphia, PA, 19102, USA
3Columbia University Irving Medical Center, 3959 Broadway, 8th Floor North – 802A, New York, NY, 10032, USA
4University of Illinois College of Medicine Rockford, 1601 Parkview Ave, Rockford, IL, 61107, USA
5Columbia University Irving Medical Center, 3959 Broadway, 8th Floor North – 802, New York, NY, 10032, USA
6Columbia University Irving Medical Center NewYork-Presbyterian Och Spine Hospital, New York, NY, 10032, USA
7Columbia University Irving Medical Center, New York, NY, 10032, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence a fundamental pelvic parameter for 3D regulation of spinal sagittal curves. Eur Spine J 7:99–103. https://doi.org/10.1007/s005860050038

During J, Goudfrooij H, Keessen W, Toward standards for posture, et al (1985) Postural characteristics of the lower back system in normal and pathologic conditions. Spine(Phila Pa 1976) 10:83–87

Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462

Legaye J (2013) The sagittal pelvic thickness: a determining parameter for the regulation of the sagittal spinopelvic balance. ISRN Anat 2013:364068. https://doi.org/10.5402/2013/364068

Ike H, Bodner RJ, Lundergan W et al (2020) The effects of pelvic incidence in the functional anatomy of the hip joint. J Bone Joint Surg Am 102:991–999. https://doi.org/10.2106/JBJS.19.00300

Le Huec JC, Aunoble S, Philippe L et al (2011) Pelvic parameters: origin and significance. Eur Spine J 20:564–571. https://doi.org/10.1007/s00586-011-1940-1

Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture 21:95–112. https://doi.org/10.1016/j.gaitpost.2004.01.001

Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Posture 21:113–124. https://doi.org/10.1016/j.gaitpost.2004.06.010

Bailey JF, Shefi S, Soudack M et al (2019) Development of pelvic incidence and lumbar lordosis in children and adolescents. Anat Rec (Hoboken) 302(12):2132–2139. https://doi.org/10.1002/ar.24209

Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. https://doi.org/10.2106/jbjs.D.02043

Schwab F, Patel A, Ungar B et al (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine(Phila Pa 1976) 35:2224–2231. https://doi.org/10.1097/BRS.0b013e3181ee6bd4

Jalai CM, Diebo BG, Cruz DL et al (2017) The impact of obesity on compensatory mechanisms in response to progressive sagittal malalignment. Spine J 17:681–688. https://doi.org/10.1016/j.spinee.2016.11.016

Cil A, Yazici M, Uzumcugil A et al (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine(Phila Pa 1976) 30:93–100

Inami S, Moridaira H, Takeuchi D et al (2016) Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence. Eur Spine J 25:3638–3643. https://doi.org/10.1007/s00586-016-4563-8

Aoki Y, Nakajima A, Takahashi H et al (2015) Influence of pelvic incidence-lumbar lordosis mismatch on surgical outcomes of short-segment transforaminal lumbar interbody fusion. BMC Musculoskelet Disord 16:213. https://doi.org/10.1186/s12891-015-0676-1

Dreischarf M, Albiol L, Rohlmann A et al (2014) Age-related loss of lumbar spinal lordosis and mobility–a study of 323 asymptomatic volunteers. PLoS ONE 9(12):e116186. https://doi.org/10.1371/journal.pone.0116186

Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine(Phila Pa 1976) 38:E803-812. https://doi.org/10.1097/BRS.0b013e318292b7b9

Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine(Phila Pa 1976) 34:E599-606. https://doi.org/10.1097/BRS.0b013e3181aad219

Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20:609–618. https://doi.org/10.1007/s00586-011-1928-x

Galbusera F, Wilke HJ, Brayda-Bruno M et al (2013) Influence of sagittal balance on spinal lumbar loads: a numerical approach. Clin Biomech(Bristol, Avon) 28:370–377. https://doi.org/10.1016/j.clinbiomech.2013.02.006

Ames CP, Smith JS, Scheer JK et al (2012) Impact of spinopelvic alignment on decision making in deformity surgery in adults: a review. J Neurosurg Spine 16:547–564. https://doi.org/10.3171/2012.2.SPINE11320

Ilharreborde B, de Saint EA, Presedo A et al (2020) Spinal sagittal alignment and head control in patients with cerebral palsy. J Child Orthop 14:17–23. https://doi.org/10.1302/1863-2548.14.190160

Borges PA, Ocampos GP, Mancuso Filho JA et al (2014) The sagital balance in idiopatic and neuromuscular collsiosis. Acta Orthop Bras 22(4):179–182. https://doi.org/10.1590/1413-78522014220400949

Engel JM, Jensen MP, Hoffman AJ et al (2003) Pain in persons with cerebral palsy: extension and cross validation. Arch Phys Med Rehabil 84(8):1125–1128. https://doi.org/10.1016/s0003-9993(03)00263-6

Opheim A, Jahnsen R, Olsson E et al (2009) Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol 51:381–388. https://doi.org/10.1111/j.1469-8749.2008.03250.x

Palisano R, Rosenbaum P, Walter S et al (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x

Dubousset J, Charpak G, Skalli W et al (2008) Modélisation vertébrale et squelettique par le système EOS. Arch Pediatr 15:665–666. https://doi.org/10.1016/s0929-693x(08)71868-2

Buckland A, DelSole E, George S et al (2017) Sagittal pelvic orientation a comparison of two methods of measurement. Bull Hosp Jt Dis(2013) 75:234–240

Sullivan TB, Marino N, Reighard FG et al (2018) Relationship between lumbar lordosis and pelvic incidence in the adolescent patient: normal cohort analysis and literature comparison. Spine Deform 6:529–536. https://doi.org/10.1016/j.jspd.2018.02.002

Senteler M, Weisse B, Snedeker JG et al (2014) Pelvic incidence-lumbar lordosis mismatch results in increased segmental joint loads in the unfused and fused lumbar spine. Eur Spine J 23:1384–1393. https://doi.org/10.1007/s00586-013-3132-7

Pesenti S, Lafage R, Stein D et al (2018) The amount of proximal lumbar lordosis is related to pelvic incidence. Clin Orthop Relat Res 476:1603–1611. https://doi.org/10.1097/CORR.0000000000000380

Mac-Thiong JM, Wang Z, de Guise JA et al (2008) Postural model of sagittal spino-pelvic alignment and its relevance for lumbosacral developmental spondylolisthesis. Spine(Phila Pa 1976) 33:2316–2325. https://doi.org/10.1097/BRS.0b013e318186b236

Basu S, Solanki A, Patel D et al (2021) Normal spino-pelvic parameters and correlation between lumbar lordosis (LL) and pelvic incidence (PI) in children and adolescents in Indian population. Spine Deform 9(4):941–948. https://doi.org/10.1007/s43390-020-00280-5

Hou C, Chen K, Chen Y et al (2021) Assessment of sagittal spinopelvic alignment in asymptomatic Chinese juveniles and adolescents: a large cohort study and comparative meta-analysis. J Orthop Surg Res 16(1):656. https://doi.org/10.1186/s13018-021-02773

Zhang Y, Shu S, Gu Q et al (2022) Radiographic study of peak velocity of pelvic incidence in adolescent idiopathic scoliosis. Quant Imaging Med Surg 12(2):1130–1138. https://doi.org/10.21037/qims-21-391

Yong Q, Zhen L, Zezhang Z et al (2012) Comparison of sagittal spinopelvic alignment in Chinese adolescents with and without idiopathic thoracic scoliosis. Spine(Phila PA 1976) 37(12):E714–E720. https://doi.org/10.1097/BRS.0b013e3182444402

Bernard JC, Deceuninck J, Leroy-Coudeville S et al (2014) Motor function levels and pelvic parameters in walking or ambulating children with cerebral palsy. Ann Phys Rehabil Med 57:409–421. https://doi.org/10.1016/j.rehab.2014.06.004

Suh DH, Hong JY, Suh SW et al (2014) Analysis of hip dysplasia and spinopelvic alignment in cerebral palsy. Spine J 14:2716–2723. https://doi.org/10.1016/j.spinee.2014.03.025

Kerr Graham H, Selber P (2003) Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br 85:157–166. https://doi.org/10.1302/0301-620x.85b2.14066

McCarthy J, Wade Shrader M, Graham K et al (2020) Establishing surgical indications for hamstring lengthening and femoral derotational osteotomy in ambulatory children with cerebral palsy. J Child Orthop 14:50–57. https://doi.org/10.1302/1863-2548.14.190173

Haberfehlner H, Jaspers RT, Rutz E et al (2018) Outcome of medial hamstring lengthening in children with spastic paresis: a biomechanical and morphological observational study. PLoS ONE 13:e0192573. https://doi.org/10.1371/journal.pone.0192573

Wolf SI, Mikut R, Kranzl A et al (2014) Which functional impairments are the main contributors to pelvic anterior tilt during gait in individuals with cerebral palsy? Gait Posture 39:359–364. https://doi.org/10.1016/j.gaitpost.2013.08.014

Wiley ME, Damiano DL (1998) Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107. https://doi.org/10.1111/j.1469-8749.1998.tb15369.x

Delp SL, Arnold AS, Speers RA et al (1996) Hamstrings and psoas lengths during normal and crouch gait: implications for muscle-tendon surgery. J Orthop Res 14:144–151. https://doi.org/10.1002/jor.1100140123

Hanson AM, Wren TAL, Rethlefsen SA et al (2023) Persistent increase in anterior pelvic tilt after hamstring lengthening in children with cerebral palsy. Gait Posture 103:184–189. https://doi.org/10.1016/j.gaitpost.2023.05.016

Tardieu C, Hasegawa K, Haeusler M (2017) How did the pelvis and vertebral column become a functional unit during the transition from occasional to permanent bipedalism? Anat Rec (Hoboken) 300:912–931. https://doi.org/10.1002/ar.23577

Dubousset J (2019) Spinal alignment, balance and harmony through the ages. Int J Orthop 2:19–24

Harada T, Ebara S, Anwar MM et al (1993) The lumbar spine in spastic diplegia. A radiographic study. J Bone Joint Surg Br 75:534–537. https://doi.org/10.1302/0301-620x.75b4.8331105

Thelen DG, Lenz AL, Francis C et al (2013) Empirical assessment of dynamic hamstring function during human walking. J Biomech 46:1255–1261. https://doi.org/10.1016/j.jbiomech.2013.02.019

Rodda JM, Graham HK, Nattrass GR et al (2006) Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am 88:2653–2664. https://doi.org/10.2106/jbjs.E.00993

Haddas R, Sambhariya V, Kosztowski T et al (2021) Cone of economy classification: evolution, concept of stability, severity level, and correlation to patient-reported outcome scores. Eur Spine J 30:2271–2282. https://doi.org/10.1007/s00586-020-06678-z

Jahnsen R, Villien L, Aamodt G et al (2004) Musculoskeletal pain in adults with cerebral palsy compared with the general population. J Rehabil Med 36:78–84. https://doi.org/10.1080/16501970310018305

van der Slot WMA, Benner JL, Brunton L et al (2021) Pain in adults with cerebral palsy: a systematic review and meta-analysis of individual participant data. Ann Phys Rehabil Med 64:101359. https://doi.org/10.1016/j.rehab.2019.12.011