Safety of biologic and nonbiologic disease-modifying antirheumatic drug therapy in veterans with rheumatoid arthritis and hepatitis B virus infection: a retrospective cohort study

Arthritis Research & Therapy - Tập 17 - Trang 1-9 - 2015
Mary Jane Burton1,2, Jeffrey R Curtis3,4, Shuo Yang3,4, Lang Chen3,4, Jasvinder A Singh3,4, Ted R Mikuls5, Kevin L Winthrop6, John W Baddley3,4
1G.V. (Sonny) Montgomery VA Medical Center, Jackson, USA
2University of Mississippi Medical Center, Jackson, USA
3Birmingham VAMC, Birmingham, USA
4University of Alabama at Birmingham, Birmingham, USA
5Omaha VAMC; UNMC, Omaha, USA
6Oregon Health & Sciences University, Portland, USA

Tóm tắt

We evaluated the safety of current treatment regimens for patients with RA and HBV in a large US cohort. We identified biologic and nonbiologic treatment episodes of RA patients using 1997 to 2011 national data from the US Veterans Health Administration. Eligible episodes had evidence of HBV infection (HBV surface antigen, HBV core antibody, HBV e-antibody and/or HBV DNA) and had a baseline alanine aminotransferase (ALT) <1.5 times the upper limit of laboratory normal within 90 days prior to initiation of a new biologic or nonbiologic DMARD. The main outcome of interest was hepatotoxicity, defined as ALT elevation >100 IU/mL. Results were reported as the cumulative incidence of treatment episodes achieving hepatotoxicity at 3, 6 and 12 months post biologic exposure. Five hundred sixty-six unique RA patients with HBV contributed 959 treatment episodes. Mean age was 62.1 ± 10.3 years; 91.8% were male. Hepatotoxicity was uncommon, with 26 events identified among 959 episodes (2.7%) within 12 months. Hepatotoxicity was comparable between biologic and nonbiologic DMARDs (2.6% vs. 2.8%, P = 0.87). The median time between HBV screening and starting a new RA drug was 504 days (IQR 144, 1,163). Follow-up HBV testing occurred among 14 hepatotoxicity episodes (53.8%) at a median of 202 days (IQR 82, 716) from the date of ALT elevation. A total of 146 (15.2%) treatment episodes received at least one test for HBV DNA at any point in the observation period. Among US veterans with RA and HBV the risk of hepatotoxicity is low (2.7%), and comparable between biologic and nonbiologic DMARDS (2.8% vs. 2.6%, P = 0.87). HBV testing associated with DMARD initiation or hepatotoxicity was infrequent.

Tài liệu tham khảo

Aithal GP. Hepatotoxicity related to antirheumatic drugs. Nat Review Rheumatol. 2011;7:139–50. Calabrese LH, Zein NN, Vassilopoulos D. Hepatitis B virus (HBV) reactivation with immunosuppressive therapy in rheumatic diseases: assessment and preventive strategies. Ann Rheum Dis. 2006;65:983–9. Visser K, van der Heijde DM. Risk and management of liver toxicity during methotrexate treatment in rheumatoid and psoriatic arthritis: a systematic review of the literature. Clin Exp Rheum. 2009;27:1017–25. Bae J, Sohn J, Lee H, Park HS, Hyun YS, Kim TY, et al. A fatal case of hepatitis B virus (HBV) reactivation during long-term, very-low-dose steroid treatment in an inactive HBV carrier. Clin Mol Hepatol. 2012;18:225–8. Ito S, Nakazono K, Murasawa A, Mita Y, Hata K, Saito N, et al. Development of fulminant hepatitis B (precore variant mutant type) after the discontinuation of low-dose methotrexate therapy in a rheumatoid arthritis patient. Arthritis Rheum. 2001;44:339–42. Oshima Y, Tsukamoto H, Tojo A. Association of hepatitis B with antirheumatic drugs: a case-control study. Mod Rheumatol. 2013;23:694–704. Vassilopoulos D, Apostolopoulou A, Hadziyannis E, Papatheodoridis GV, Manolakopoulos S, Koskinas J, et al. Long-term safety of anti-TNF treatment in patients with rheumatic diseases and chronic or resolved hepatitis B virus infection. Ann Rheum Dis. 2010;69:1352–5. Charpin C, Guis S, Colson P, Borentain P, Mattéi JP, Alcaraz P, et al. Safety of TNF-blocking agents in rheumatic patients with serology suggesting past hepatitis B state: results from a cohort of 21 patients. Arthritis Res Ther. 2009;11:R179. Mitroulis I, Hatzara C, Kandili A, Hadziyannis E, Vassilopoulos D. Long-term safety of rituximab in patients with rheumatic diseases and chronic or resolved hepatitis B virus infection. Ann Rheum Dis. 2013;72:308–10. Biondo MI, Germano V, Pietrosanti M, Canzoni M, Marignani M, Stroffolini T, et al. Lack of hepatitis B virus reactivation after anti-tumor necrosis factor alpha agents therapy in antibody to hepatitis B core antigen positive/hepatitis B surface antigen negative subjects with chronic inflammatory arthropathies. Eur J Intern Med. 2014;25:482–4. Tan J, Zhou J, Zhao P, Wei J. Prospective study of HBV reactivation risk in rheumatoid arthritis patients who received conventional disease-modifying antirheumatic drugs. Clin Rheumatol. 2012;31:1169–75. Urata Y, Uesato R, Tanaka D, Kowatari K, Nitobe T, Nakamura Y, et al. Prevalence of reactivation of hepatitis B virus replication in rheumatoid arthritis patients. Mod Rheumatol. 2011;21:16–23. Stine JG, Khokhar OS, Charalambopoulus J, Shanmugam VK, Lewis JH. Rheumatologists' awareness of and screening practices for hepatitis B infection prior initiating immunomodulatory therapy. Arth Care Res (Hoboken). 2010;62:704–11. Saag KG, Teng GG, Patkar N, Anuntiyo J, Finney C, Curtis JR, et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 2008;98:762–84. Food and Drug Administration Drug Safety Communication. Boxed warning and new recommendations to decrease risk of hepatitis B reactivation with the immune-suppressing and anti-cancer drugs Arzerra (ofatumumab) and Rituxan (rituximab). http://www.fda.gov/Drugs/DrugSafety/ucm366406.htm. Accessed September 25, 2013. Weinbaum CM, Williams I, Mast EE, Wang SA, Finelli L, et al. Recommendations for identification and public health management of persons with chronic HBV infection. MMWR Recomm Rep. 2008;57:1–20. VIReC Research User Guides Index. http://vaww.virec.research.va.gov/RUGs/RUGs-Index.htm. Accessed May 8, 2013. Ruhl CE, Everhart JE. Upper limits of normal for alanine aminotransferase activity in the United States population. Hepatology. 2012;55:447–54. Piton A, Poynard T, Imbert-Bismut F, Khalil L, Delattre J, Pelissier E, et al. Factors associated with serum alanine transaminase activity in healthy subjects: consequences for the definition of normal values, for selection of blood donors, and for patients with chronic hepatitis C. Hepatology. 1998;27:1213–9. Food and Drug Administration. Drug-induced liver injury: premarketing clinical evaluation. https://www.fda.gov/Drugs/Guidances/ucm064993.htm. Accessed February 7, 2014. Temple R. Hy's law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Safe. 2006;15:241–3. Lok AS, Lai CL, Wu PC, Leung EK, Lam TS. Spontaneous hepatitis B e antigen to antibody seroconversion and reversion in Chinese patients with chronic hepatitis B virus infection. Gastroenterology. 1987;92:1839–43. Visser K, Katchamart W, Loza E, Martinez-Lopez JA, Salliot C, Trudeau J, et al. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative. Ann Rheum Dis. 2009;68:1086–93. Lee YH, Bae SC, Song GG. Hepatitis B virus reactivation in HBsAg-positive patients with rheumatic diseases undergoing anti-tumor necrosis factor therapy or DMARDs. Int J Rheum Dis. 2013;16:527–31. Lok ASF, McMahon BJ. Chronic hepatitis B: update 2009. Hepatology. 2009;50:661–2. Singh JA, Furst DE, Bharat A, Curtis JR, Kavanaugh AF, Kremer JM, et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. 2012;64:625–39. Winthrop KL, Calabrese LH. Let the fog be lifted: screening for hepatitis B virus before biological therapy. Ann Rheum Dis. 2011;70:1701–3. Kim YJ, Bae SC, Sung YK, Kim TH, Jun JB, Yoo DH, et al. Possible reactivation of potential hepatitis B virus occult infection by tumor necrosis factor-alpha blocker in the treatment of rheumatic diseases. J Rheumatol. 2010;37:346–50. Caporali R, Bobbio-Pallavicini F, Atzeni F, Sakellariou G, Caprioli M, Montecucco C, et al. Safety of tumor necrosis factor α blockers in hepatitis B virus occult carriers (hepatitis B surface antigen negative/anti-hepatitis B core antigen positive) with rheumatic diseases. Arthritis Care Res (Hoboken). 2010;62:749–54. Droz N, Gilardin L, Cacoub P, Berenbaum F, Wendling D, Godeau B, et al. Kinetic profiles and management of hepatitis B virus reactivation in patients with immune-mediated inflammatory diseases. Arthritis Care Res (Hoboken). 2013;65:1504–14. Lan JL, Chen YM, Hsieh TY, Chen YH, Hsieh CW, Chen DY, et al. Kinetics of viral loads and risk of hepatitis B reactivation in hepatitis B core antibody-positive rheumatoid arthritis patients undergoing anti-tumour necrosis factor alpha therapy. Ann Rheum Dis. 2011;70:1719–25. Carroll MB, Forgione M. Use of tumor necrosis factor alpha inhibitors in hepatitis b surface antigen-positive patients: a literature review and potential mechanisms of action. Clin Rheum. 2010;29:1021–9. Hoofnagle JH. Reactivation of hepatitis B. Hepatology. 2009;49:S156–65. den Brinker M, Wit FW, Wertheim-van Dillen PM, Jurriaans S, Weel J, van Leeuwen R. Hepatitis B and C virus co-infection and the risk for hepatotoxicity of highly active antiretroviral therapy in HIV-1 infection. AIDS. 2000;14:2895–902. Xuan D, Yu Y, Shao L, Wang J, Zhang W, Zou H. Hepatitis reactivation in patients with rheumatic diseases after immunosuppressive therapy-a report of long-term follow-up of serial cases and literature review. Clin Rheumatol. 2014;33:577–86. Kim PS, Ho GY, Prete PE, Furst DE. Safety and efficacy of abatacept in eight rheumatoid arthritis patients with chronic hepatitis B. Arthritis Care Res (Hoboken). 2012;64:1265–8.