Safety of Magnetic Resonance Imaging in Pregnancy

Springer Science and Business Media LLC - Tập 63 Số S2 - Trang 34-40 - 2023
Pejman Maralani1, Vivek Pai2, Birgit Ertl‐Wagner2
1Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada
2Department of Medical Imaging, University of Toronto, The Hospital for Sick Children, 555 University Ave, M5G 1X8, Toronto, ON, Canada.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961

Jabehdar Maralani P, Kapadia A, Liu G et al (2022) Canadian association of radiologists recommendations for the safe use of MRI during pregnancy. Can Assoc Radiol J 73:56–67

Allison J, Yanasak N (2015) What MRI sequences produce the highest specific absorption rate (SAR), and is there something we should be doing to reduce the SAR during standard examinations? AJR Am J Roentgenol 205:W140

Gatta G, Di Grezia G, Cuccurullo V et al (2021) MRI in pregnancy and precision medicine: a review from literature. J Pers Med 12(1):9. https://doi.org/10.3390/jpm12010009

Murbach M, Neufeld E, Samaras T et al (2017) Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages. Magn Reson Med 77:2048–2056

Ziskin MC, Morrissey J (2011) Thermal thresholds for teratogenicity, reproduction, and development. Int J Hyperthermia 27:374–387

Hand JW, Li Y, Thomas EL et al (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893

NEMA (2016) Characterization of the specific absorption rate (SAR) for magnetic resonance imaging systems, p 31

De Wilde JP, Rivers AW, Price DL (2005) A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Prog Biophys Mol Biol 87:335–353

International Commission on Non-Ionizing Radiation Protection (2009) Amendment to the ICNIRP statement on medical magnetic resonance (MR) procedures: protection of patients. Health Phys 97:259–261

Patenaude Y, Pugash D, Lim K et al (2014) RETIRED: the use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36:349–363

Barrera CA, Francavilla ML, Serai SD et al (2020) Specific absorption rate and specific energy dose: comparison of 1.5‑T versus 3.0‑T fetal MRI. Radiology 295:664–674

Brugger PC, Prayer D (2012) Actual imaging time in fetal MRI. Eur J Radiol 81:e194–196

Ciet P, Litmanovich DE (2015) MR safety issues particular to women. Magn Reson Imaging Clin N Am 23:59–67

Choi JS, Ahn HK, Han JY et al (2015) A case series of 15 women inadvertently exposed to magnetic resonance imaging in the first trimester of pregnancy. J Obstet Gynaecol 35:871–872

Bouyssi-Kobar M, du Plessis AJ, Robertson RL et al (2015) Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age. Pediatr Radiol 45:1823–1830

Zvi E, Shemer A, Toussia-Cohen S et al (2020) Fetal exposure to MR imaging: long-term neurodevelopmental outcome. Ajnr Am J Neuroradiol 41:1989–1992

Cannie MM, De Keyzer F, Van Laere S et al (2016) Potential heating effect in the gravid uterus by using 3‑T MR imaging protocols: experimental study in miniature pigs. Radiology 279:754–761

Chartier AL, Bouvier MJ, Mcpherson DR et al (2019) The safety of maternal and fetal MRI at 3 T. AJR Am J Roentgenol 213:1170–1173

Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220

Weisstanner C, Gruber GM, Brugger PC et al (2017) Fetal MRI at 3T-ready for routine use? Br J Radiol 90:20160362

Homann H, Graesslin I, Eggers H et al (2012) Local SAR management by RF shimming: a simulation study with multiple human body models. Magma 25:193–204

Mcjury M, Shellock FG (2000) Auditory noise associated with MR procedures: a review. J Magn Reson Imaging 12:37–45

McNulty JP, McNulty S (2009) Acoustic noise in magnetic resonance imaging: an ongoing issue. Radiography 15:320–326

Price DL, De Wilde JP, Papadaki AM et al (2001) Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging 13:288–293

Hattori Y, Fukatsu H, Ishigaki T (2007) Measurement and evaluation of the acoustic noise of a 3 Tesla MR scanner. Nagoya J Med Sci 69:23–28

Hepper PG, Shahidullah BS (1994) Development of fetal hearing. Arch Dis Child Fetal Neonatal Ed 71:F81–87

Gerhardt KJ, Pierson LL, Huang X et al (1999) Effects of intense noise exposure on fetal sheep auditory brain stem response and inner ear histology. Ear Hear 20:21–32

Jaimes C, Delgado J, Cunnane MB et al (2019) Does 3‑T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 49:37–45

Glover P, Hykin J, Gowland P et al (1995) An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 68:1090–1094

Victoria T, Johnson AM, Edgar JC et al (2016) Comparison between 1.5‑T and 3‑T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201

Gerhardt KJ, Otto R, Abrams RM et al (1992) Cochlear microphonics recorded from fetal and newborn sheep. Am J Otolaryngol 13:226–233

Strizek B, Jani JC, Mucyo E et al (2015) Safety of MR imaging at 1.5 T in fetuses: a retrospective case-control study of birth weights and the effects of acoustic noise. Radiology 275:530–537

Reeves MJ, Brandreth M, Whitby EH et al (2010) Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiology 257:802–809

Kok RD, de Vries MM, Heerschap A et al (2004) Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging 22:851–854

Do C, Deaguero J, Brearley A et al (2020) Gadolinium-based contrast agent use, their safety, and practice evolution. Kidney 1:561–568

Okazaki O, Murayama N, Masubuchi N et al (1996) Placental transfer and milk secretion of gadodiamide injection in rats. Arzneimittelforschung 46:83–86

Panigel M, Wolf G, Zeleznick A (1988) Magnetic resonance imaging of the placenta in rhesus monkeys, Macaca mulatta. J Med Primatol 17:3–18

Dean PB, Niemi P, Kivisaari L et al (1988) Comparative pharmacokinetics of gadolinium DTPA and gadolinium chloride. Invest Radiol 23(1):S258–260

Schieda N, Blaichman JI, Costa AF et al (2018) Gadolinium-based contrast agents in kidney disease: comprehensive review and clinical practice guideline issued by the Canadian association of radiologists. Can Assoc Radiol J 69:136–150

Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757

Bird ST, Gelperin K, Sahin L et al (2019) First-trimester exposure to gadolinium-based contrast agents: a utilization study of 4.6 million U.S. pregnancies. Radiology 293:193–200

Okuda Y, Sagami F, Tirone P et al (1999) Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3)—study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci 24(1):79–87

Rofsky NM, Pizzarello DJ, Weinreb JC et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging 4:805–807

Prola-Netto J, Woods M, Roberts VHJ et al (2018) Gadolinium chelate safety in pregnancy: barely detectable gadolinium levels in the juvenile nonhuman primate after in utero exposure. Radiology 286:122–128

De Santis M, Straface G, Cavaliere AF et al (2007) Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet Gynecol Scand 86:99–101

Keskin-Arslan E, Erol-Coskun H, Yilmaz I et al (2018) Pregnancy outcomes following gadolinium-based contrast agents exposure during the first trimester: preliminary results of 13 cases. Reprod Toxicol 80:155–156

Muhler MR, Clement O, Salomon LJ et al (2011) Maternofetal pharmacokinetics of a gadolinium chelate contrast agent in mice. Radiology 258:455–460

Marcos HB, Semelka RC, Worawattanakul S (1997) Normal placenta: gadolinium-enhanced dynamic MR imaging. Radiology 205:493–496

Tanaka YO, Sohda S, Shigemitsu S et al (2001) High temporal resolution dynamic contrast MRI in a high risk group for placenta accreta. Magn Reson Imaging 19:635–642

Birchard KR, Brown MA, Hyslop WB et al (2005) MRI of acute abdominal and pelvic pain in pregnant patients. AJR Am J Roentgenol 184:452–458

Spencer JA, Tomlinson AJ, Weston MJ et al (2000) Early report: comparison of breath-hold MR excretory urography, Doppler ultrasound and isotope renography in evaluation of symptomatic hydronephrosis in pregnancy. Clin Radiol 55:446–453

Winterstein AG, Thai TN, Nduaguba S et al (2023) Risk of fetal or neonatal death or neonatal intensive care unit admission associated with gadolinium magnetic resonance imaging exposure during pregnancy. Am J Ostet Gynecol 228(4):465.e1–465.e11

Novak Z, Thurmond AS, Ross PL et al (1993) Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Invest Radiol 28:828–830

Tremblay E, Therasse E, Thomassin-Naggara I et al (2012) Quality initiatives: guidelines for use of medical imaging during pregnancy and lactation. Radiographics 32:897–911

Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology 216:555–558

Schmiedl U, Maravilla KR, Gerlach R et al (1990) Excretion of gadopentetate dimeglumine in human breast milk. AJR Am J Roentgenol 154:1305–1306

Rofsky NM, Weinreb JC, Litt AW (1993) Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging 3:131–132

de Vries JI, Fong BF (2006) Normal fetal motility: an overview. Ultrasound Obstet Gynecol 27:701–711

Lu Y, Yang T, Luo H et al (2016) Visualization and quantitation of fetal movements by real-time three-dimensional ultrasound with live xPlane imaging in the first trimester of pregnancy. Croat Med J 57:474–481

Garel C, Brisse H, Sebag G et al (1998) Magnetic resonance imaging of the fetus. Pediatr Radiol 28:201–211

Cassart M, Garel C (2020) European overview of current practice of fetal imaging by pediatric radiologists: a new task force is launched. Pediatr Radiol 50:1794–1798

Meyers ML, Mirsky DM, Dannull KA et al (2017) Effects of maternal valium administration on fetal MRI motion artifact: a comparison study at high altitude. Fetal Diagn Ther 42:124–129

Chapman T, Alazraki AL, Eklund MJ (2018) A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging. Pediatr Radiol 48:1924–1935

Luchi C, Schifano M, Nanini C et al (2010) Is there a good time for nuchal translucency measurement? Prenat Diagn 30:487–488

Yen CJ, Mehollin-Ray AR, Bernardo F et al (2019) Correlation between maternal meal and fetal motion during fetal MRI. Pediatr Radiol 49:46–50

Saleem SN (2014) Fetal MRI: an approach to practice: a review. J Adv Res 5:507–523

Kanal E, Borgstede JP, Barkovich AJ et al (2002) American college of radiology white paper on MR safety. AJR Am J Roentgenol 178:1335–1347

McRobbie DW (2012) Occupational exposure in MRI. Br J Radiol 85:293–312

Alorainy IA, Albadr FB, Abujamea AH (2006) Attitude towards MRI safety during pregnancy. Ann Saudi Med 26:306–309

International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514

Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19

Kanal E, Gillen J, Evans JA et al (1993) Survey of reproductive health among female MR workers. Radiology 187:395–399

Griffiths SK, Pierson LL, Gerhardt KJ et al (1994) Noise induced hearing loss in fetal sheep. Hear Res 74:221–230

Cook RO, Konishi T, Salt AN et al (1982) Brainstem-evoked responses of guinea pigs exposed to high noise levels in utero. Dev Psychobiol 15:95–104

Guven SG, Tas M, Bulut E et al (2019) Does noise exposure during pregnancy affect neonatal hearing screening results? Noise Health 21:69–76

Lalande NM, Hetu R, Lambert J (1986) Is occupational noise exposure during pregnancy a risk factor of damage to the auditory system of the fetus? Am J Ind Med 10:427–435

Selander J, Albin M, Rosenhall U et al (2016) Maternal occupational exposure to noise during pregnancy and hearing dysfunction in children: a nationwide prospective cohort study in Sweden. Environ Health Perspect 124:855–860

Leithner K, Prayer D, Porstner E et al (2013) Psychological reactions related to fetal magnetic resonance imaging: a follow-up study. J Perinat Med 41:273–276

Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304

Mathur S, Pillenahalli Maheshwarappa R, Fouladirad S et al (2020) Emergency imaging in pregnancy and lactation. Can Assoc Radiol J 71:396–402

Leithner K, Pornbacher S, Assem-Hilger E et al (2009) Prenatal magnetic resonance imaging: towards optimized patient information. Ultrasound Obstet Gynecol 34:182–187