Safety implications of higher levels of automated vehicles: a scoping review
Tài liệu tham khảo
Analytics, C. (2019). EndNote X9. Retrieved from https://endnote.com/
10.1080/1364557032000119616
Arvin, R., Kamrani, M., Khattak, A. J. & Rios-Torres, J. (2018). Safety impacts of automated vehicles in mixed traffic. Transportation Research Board 97th Annual Meeting Washington, DC, United States.
Arvin, R., Khattak, A. J. & Rios-Torres, J. (2019). Evaluating safety with automated vehicles at signalized intersections: Application of adaptive cruise control in mixed traffic. Transportation Research Board 98th Annual Meeting, Washington, DC, United States.
10.5220/0005540501910198
10.1016/j.aap.2019.105406
Casualty Acturial Society. (2014). Restating the national highway transportation safety administration’s national motor vehicle crash.
10.1080/01441647.2018.1524401
10.1016/j.amepre.2018.06.024
10.1016/B978-0-12-817696-2.00001-9
Dean J., 2019, Bmc Public Health, 19, 10.1186/s12889-019-7580-9
Detwiller, M. & Gabler, H. C. (2017). Potential reduction in pedestrian collisions with an autonomous vehicle. 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Detroit, Michigan, United States.
ETSC (European Transport Safety Council), 2001, Transport safety performance indicators
Faggela, D. (2020, March 14). Emerj: The AI research and advisory company. Retrieved May 15, 2020, from https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
Fagnant, D. & Kockelman, K. (2014). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Board 93rd Annual Meeting, Washington, DC, United States.
10.1016/j.tra.2015.04.003
Farah H., 2020, IEEE Transactions on Intelligent Transportation Systems, 1
10.1007/978-3-319-60934-8_16
10.1080/01441647.2018.1518937
10.1177/0361198120928351
Gasser, T. M. & Westhoff, D. (Producer). (2012). BASt-study: Definitions of automation and legal issues in Germany. Workshop on the Future of Road Vehicle Automation.
10.1016/j.trf.2014.03.003
Granados, M. E., Persaud, B., Rajeswaran, T. & Saleem, T. (2018). Using microsimulation to evaluate the impact of automated vehicles on safety performance of signalized intersections. Transportation Research Board 97th Annual Meeting, Washington, DC, United States.
10.1016/j.biocon.2015.08.018
10.1016/S0925-7535(00)00058-8
Jadaan K., 2018, Journal of Traffic and Logistics Engineering, 1, 10.18178/jtle.6.1.1-5
10.1145/2372251.2372257
Kakimoto Y., 2018, Transportation Research Procedia, 34, 219, 10.1016/j.trpro.2018.11.035
Kalra, N. & Groves, D. G. (2017). RAND model of automated vehicle safety (MAVS): Model documentation.
10.1155/2019/6126408
Kim K., 2021, Computers & Security, 103
10.1080/15389588.2019.1625335
10.17265/2159-5313/2016.09.003
Kühn M., 2020, Automated cars on motorways: Active and passive safety aspects
10.1186/s12544-019-0375-3
10.1016/j.trf.2018.08.010
10.1016/j.aap.2020.105457
10.1097/TA.0000000000000816
Ma C., 2018, Journal of Advanced Transportation, 2018, 1
Mahmud S. M. S., 2019, IATSS Research, 43, 27, 10.1016/j.iatssr.2018.07.002
10.1159/000498908
10.1186/2046-4053-4-1
10.1155/2018/6135183
10.1186/s12874-018-0611-x
NHTSA. (2013). Preliminary statement of policy concerning automated vehicles.
Olia A., 2016, Journal of Intelligent Transportation Systems, 20, 485, 10.1080/15472450.2016.1228375
Ondruš J., 2020, Transportation Research Procedia, 44, 226, 10.1016/j.trpro.2020.02.049
10.1016/j.trf.2019.05.017
Pendleton S., 2017, Machines, 5, 6, 10.3390/machines5010006
10.1016/j.techfore.2019.02.010
10.1109/SCSP.2017.7973864
10.1002/2327-6924.12380
10.1002/jrsm.1123
10.3141/2124-25
Rau, P., Yanagisawa, M. & Najm, W. G. (2015). Target crash population of automated vehicles. 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Gothenburg, Sweden.
Reddy N., 2020, IEEE Open Journal of Intelligent Transportation Systems, 1, 237, 10.1109/OJITS.2020.3040889
SAE. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles.
10.1016/j.trf.2021.01.010
Schwall, M., Daniel, T., Victor, T., Favaro, F. & Hohnhold, H. (2020). Waymo public road safety performance data. ArXiv abs/2011.00038.
10.1080/15472450.2017.1336053
Singh S., 2015, Critical reasons for crashes investigated in the National Motor Vehicle Crash causation survey
10.1016/j.scs.2020.102457
10.1080/01441647.2018.1523253
10.1080/01441647.2018.1494640
Tafidis P., 2019, Safety, 5, 57, 10.3390/safety5030057
10.1080/00140139.2020.1739326
Tibljas A. D., 2018, Sustainability, 10
10.7326/M18-0850
10.3390/su12083206
10.1016/j.aap.2015.08.007
Vasebi S., 2020, Transportation Research Interdisciplinary Perspectives, 7, 10.1016/j.trip.2020.100194
Wang, L., Fahrenkrog, F., Vogt, T., Jung, O. & Kates, R. (2017). Prospective safety assessment of highly automated driving functions using stochastic traffic simulation. National Highway Traffic Safety Administration.
10.1145/3357000.3366145
10.1177/0361198119847475
10.1109/MVT.2019.2892497
10.1016/j.trpro.2019.09.009
10.3141/2489-14
Zlocki A., 2014, Road Vehicle Automation, 197, 10.1007/978-3-319-05990-7_17