Saccharomyces cerevisiae Phosphoenolpyruvate Carboxykinase: The Relevance of Glu299 and Leu460 for Nucleotide Binding

The Protein Journal - Tập 29 - Trang 299-305 - 2010
Estela Pérez1, Emilio Cardemil1
1Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile

Tóm tắt

A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate ⇄ ADP + PEP + CO2) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2′OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K m for ADPMn− and ATPMn2−, respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol−1 in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2′deoxyADP and 2′deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2′deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2′OH group may not be relevant for nucleotide binding.

Tài liệu tham khảo

Aich S, Delbaere LTJ (2007) Evol Bioinform 3:333–340 Babor M, Sobolev V, Edelman M (2002) J Mol Biol 323:523–532 Bueno C, González-Nilo FD, Encinas MV, Cardemil E (2004) Int J Biochem Cell Biol 36:861–869 Cannata JJB, de Flombaum MAC (1974) J Biol Chem 249:3356–3365 Case CL, Concar EM, Boswell KL, Mukhopadhyay B (2006) J Biol Chem 281:39262–39272 Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, London Cotelesage JJ, Prasad L, Zeikus JG, Laivenieks M, Delbaere LT (2005) Int J Biochem Cell Biol 37:1829–1837 Dalziel K (1962) Nature 196:1203–1205 Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta AK (2005) Biochem J 387:591–600 Dunten P, Belunis C, Crowther R, Hollfelder K, Kammlott U, Levin W, Michel H, Ramsey GR, Swain A, Weber D, Wertheimer SJ (2002) J Mol Biol 316:257–264 Foley LH, Wang P, Dunten P, Ramsey G, Gubler ML, Wertheimer SJ (2003) Bioorg Med Chem Lett 13:3871–3874 Frey PA, Hegeman AD (2007) Enzymatic reaction mechanisms. Oxford University Press, NY Fukuda W, Fukui T, Atomi H, Imanaka T (2004) J Bact 186:4620–4627 Hanson R, Patel Y (1994) Adv Enzymol Relat Areas Mol Biol 69:203–281 Holyoak T, Sullivan SM, Nowak T (2006) Biochemistry 45:8254–8263 Jacob LR, Vollert H, Rose M, Entian KD, Bartunik LJ, Bartunik HD (1992) J Chromatogr 625:47–54 Krautwurst H, Encinas MV, Marcus F, Latshaw SP, Kemp RG, Frey PA, Cardemil E (1995) Biochemistry 34:6382–6388 Krautwurst H, Bazaes S, Gonzalez FD, Jabalquinto AM, Frey PA, Cardemil E (1998) Biochemistry 37:6295–6302 Krautwurst H, Roschzttardtz H, Bazaes S, Gonzalez-Nilo FD, Nowak T, Cardemil E (2002) Biochemistry 41:12763–12770 Krebs A, Bridger WA (1979) Can J Biochem 58:309–318 Leduc YA, Prasad L, Laivenieks M, Zeikus JG, Delbaere LT (2005) Acta Cryst D61:903–912 Lee MJ, Hebda CA, Nowak T (1981) J Biol Chem 256:12793–12801 Madhusudan TrafnyEA, Xuong NH, Adams JA, Ten Eyck LF, Taylor SS, Sowadski JM (1994) Protein Sci 3:176–187 Martel AE, Smith RM (1998) NIST critically selected stability constants of metal complexes. NIST standard references database 46 version 5.0 Matte A, Tari LW, Goldie H, Delbaere LTJ (1997) J Biol Chem 272:8105–8108 Mukhopadhyay B, Concar EM, Wolfe RS (2001) J Biol Chem 276:16137–16145 Muller M, Muller H, Holzer H (1981) J Biol Chem 256:723–727 Perella FW (1988) Anal Biochem 174:437–447 Pérez E, Espinoza R, Laivenieks L, Cardemil E (2008) Biochimie 90:1685–1692 Pyrkov TV, Kosinsky YA, Arseniev AS, Priestle JP, Jacoby E, Efremov RG (2007) Proteins Struct Func Bioinf 66:388–398 Qiu JA, Wilson HL, Pushie MJ, Kisker C, George GN, Rajagopalan KV (2010) Biochemistry 49:3989–4000 Ravanal MC, Flores M, Perez E, Aroca F, Cardemil E (2004) Biochimie 86:357–362 Rios SE, Nowak T (2002) Arch Biochem Biophys 404:25–37 Sepúlveda C, Poch A, Espinoza R, Cardemil E (2010) Biochimie, in the press, doi:10.1016/j.biochi.2010.02.032 Stiffin RM, Sullivan SM, Carlson GM, Holyoak T (2008) Biochemistry 47:2099–2109 Sugahara M, Ohshima N, Ukita Y, Sugahara M, Kunishima N (2005) Acta Cryst D 61:1500–1507 Sullivan SM, Holyoak T (2007) Biochemistry 46:10078–10088 Tari LW, Matte A, Pugazhenthi U, Goldie H, Delbaere LTJ (1996) Nat Struct Biol 3:355–363 Tari LW, Matte A, Goldie H, Delbaere LTJ (1997) Nat Struct Biol 4:990–994 Tobar I, González-Nilo FD, Jabalquinto AM, Cardemil E (2008) Int J Biochem Cell Biol 40:1883–1889 Trapani S, Linss J, Goldenberg S, Fischer H, Craievich AF, Oliva G (2001) J Mol Biol 313:1059–1072 Utter MF, Kolenbrander HM (1972) The Enzymes, 6th edn. Academic Press, New York, pp 117–168 Villarreal JM, Bueno C, Arenas F, Jabalquinto AM, González-Nilo FD, Encinas MV, Cardemil E (2006) Int J Biochem Cell Biol 38:576–588 Zeng C, Aleshin AE, Hardie JB, Harrison RW, Fromm HJ (1996) Biochemistry 35:13157–13164