SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development

Journal of Proteomics - Tập 204 - Trang 103391 - 2019
Daniel Valent1, Natalia Yeste1, Lorenzo E. Hernández-Castellano2,3, Laura Arroyo1, Wei Wu2, Consolación García-Contreras4, Marta Vázquez-Gómez5, Antonio González-Bulnes4,5, Emøke Bendixen2, Anna Bassols1
1Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
2Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
3Department of Animal Science, AU-Foulum, Aarhus University, 8830, Tjele, Denmark
4Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
5Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain

Tài liệu tham khảo

Yu, 2004, Neonatal management of the growth-restricted infant, Semin. Fetal Neonatal Med., 9, 403, 10.1016/j.siny.2004.03.004 McMillen, 2001, Fetal growth restriction: adaptations and consequences, Reproduction, 122, 195, 10.1530/rep.0.1220195 Bauer, 2003, Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets, Eur. J. Obstet. Gynecol. Reprod. Biol., 110, S40, 10.1016/S0301-2115(03)00171-4 Camprubí Camprubí, 2017, Learning and memory disabilities in IUGR babies: functional and molecular analysis in a rat model, Brain Behav, 7, 10.1002/brb3.631 Miller, 2016, The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome, J. Physiol., 594, 807, 10.1113/JP271402 Beukers, 2017, Fetal growth restriction with brain sparing: neurocognitive and behavioral outcomes at 12 years of age, J. Pediatr., 188, 103, 10.1016/j.jpeds.2017.06.003 McDougall, 2017, Intrauterine growth restriction alters the postnatal development of the rat cerebellum, Dev. Neurosci., 39, 215, 10.1159/000470902 Tolcos, 2018, Intrauterine growth restriction affects cerebellar granule cells in the developing Guinea pig brain, Dev. Neurosci., 40, 162, 10.1159/000487797 Pedroso, 2017, Intrauterine growth restriction programs the hypothalamus of adult male rats: integrated analysis of proteomic and Metabolomic data, J. Proteome Res., 16, 1515, 10.1021/acs.jproteome.6b00923 Kesner, 2004, A behavioral assessment of hippocampal function based on a subregional analysis, Rev. Neurosci., 15, 333, 10.1515/REVNEURO.2004.15.5.333 Cumberland, 2017, Effects of combined IUGR and prenatal stress on the development of the hippocampus in a fetal guinea pig model, J. Dev. Orig. Health Dis., 8, 584, 10.1017/S2040174417000307 Morgane, 2002, Effects of prenatal protein malnutrition on the hippocampal formation, Neurosci. Biobehav. Rev., 26, 471, 10.1016/S0149-7634(02)00012-X Reinius, 2009, 14, 988 Bronson, 2017, Sex-specific neurodevelopmental programming by placental insulin receptors on stress reactivity and sensorimotor gating, Biol. Psychiatry, 82, 127, 10.1016/j.biopsych.2016.12.025 Garcia-Contreras, 2017, Ontogeny of sex-related differences in foetal developmental features, lipid availability and fatty acid composition, Int. J. Mol. Sci., 18, 1171, 10.3390/ijms18061171 Gonzalez-Bulnes, 2015, Fetal sex modulates developmental response to maternal malnutrition, PLoS One, 10, 10.1371/journal.pone.0142158 Aiken, 2013, Sex differences in developmental programming models, Reproduction, 145, R1, 10.1530/REP-11-0489 Moritz, 2010, Review: sex specific programming: a critical role for the renal renin–angiotensin system, Placenta, 31, S40, 10.1016/j.placenta.2010.01.006 Wang, 2010, Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction, J. Proteome Res., 9, 924, 10.1021/pr900747d Aravidou, 2015, Protein expression in the brain of rat offspring in relation to prenatal caloric restriction, J. Matern. Neonatal Med., 1 Hernández-Núñez, 2015, Utility of proteomics in obstetric disorders: a review, Int. J. Women's Health, 7, 385, 10.2147/IJWH.S79577 Yan, 2018, Stage-specific feed intake restriction differentially regulates placental traits and proteome of goats, Br. J. Nutr., 119, 1119, 10.1017/S0007114518000727 Pedroso, 2018, A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction, Eur. J. Nutr. de Souza, 2015, Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach, Proteome Sci., 13, 32, 10.1186/s12953-015-0088-z Gonzalez-Bulnes, 2016, Empowering translational research in Fetal growth restriction: sheep and swine animal models, Curr. Pharm. Biotechnol., 17, 848, 10.2174/1389201017666160519111529 Walsh Hentges, 1987, Serum and lipoprotein lipids of fetal pigs and their dams during gestation as compared with man, Biol. Neonate, 52, 127, 10.1159/000242701 Garcia-Contreras, 2017, Ontogeny of sex-related differences in foetal developmental features, lipid availability and fatty acid composition, Int. J. Mol. Sci., 18, 1171, 10.3390/ijms18061171 Rudolph, 1984, The fetal circulation and its response to stress, J. Dev. Physiol., 6, 11 Wu, 2019, Comparing SRM and SWATH methods for quantitation of bovine muscle proteomes, J. Agric. Food Chem., 67, 1608, 10.1021/acs.jafc.8b05459 Bruderer, 2015, Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues, Mol. Cell. Proteomics, 14, 1400, 10.1074/mcp.M114.044305 Mi, 2017, PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways, and data analysis tool enhancements, Nucleic Acids Res., 45, D183, 10.1093/nar/gkw1138 Fabregat, 2018, The Reactome pathway knowledgebase, Nucleic Acids Res., 46, D649, 10.1093/nar/gkx1132 McCarthy, 2016, Sex differences in the developing brain as a source of inherent risk, Dialogues Clin. Neurosci., 18, 361, 10.31887/DCNS.2016.18.4/mmccarthy Marrocco, 2016, Sex in the brain: hormones and sex differences, Dialogues Clin. Neurosci., 18, 373, 10.31887/DCNS.2016.18.4/jmarrocco Ji, 2017, Fetal and neonatal programming of postnatal growth and feed efficiency in swine, J. Anim. Sci. Biotechnol., 8, 1, 10.1186/s40104-017-0173-5 Du, 2009, Starving neurons show sex difference in autophagy, J. Biol. Chem., 284, 2383, 10.1074/jbc.M804396200 Shah, 2014, Do you know the sex of your cells?, AJP Cell Physiol, 306, C3, 10.1152/ajpcell.00281.2013 D. Manole, 2011, Unmasking sex-based disparity in neuronal metabolism, Curr. Pharm. Des., 17, 3854, 10.2174/138161211798357737 Yam, 2008, Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies, Nat. Struct. Mol. Biol., 15, 1255, 10.1038/nsmb.1515 Gurniak, 2005, The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration, Dev. Biol., 278, 231, 10.1016/j.ydbio.2004.11.010 Inagaki, 1999, CRMP-2 induces axons in hippocampal neurons, Dev. Dyn., 216, 781 Cole, 2004, GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons, J. Biol. Chem., 279, 50176, 10.1074/jbc.C400412200 Gauthier-Campbell, 2004, Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs, Mol. Biol. Cell, 15, 2205, 10.1091/mbc.e03-07-0493 Watabe-Uchida, 2006, The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of Stathmin/Op18, Neuron, 51, 727, 10.1016/j.neuron.2006.07.020 Lees, 2011, Tropomyosin in actin dynamics and cell migration, Cell Adhes. Migr., 5, 181, 10.4161/cam.5.2.14438 Häbig, 2013, LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4, BBA - Mol. Basis Dis., 1832, 2352, 10.1016/j.bbadis.2013.09.009 Meloni, 2011, Redox activity of $α$-synuclein-cu is silenced by Zn 7-metallothionein-3, Free Radic. Biol. Med., 50, 1471, 10.1016/j.freeradbiomed.2011.02.003 Da Costa, 2000, Wild-type but not Parkinson's disease-related Ala-53 → Thr mutant $α$-Synuclein protects neuronal cells from apoptotic stimuli, J. Biol. Chem., 275, 24065, 10.1074/jbc.M002413200 Óvilo, 2014, Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression, Br. J. Nutr., 111, 735, 10.1017/S0007114513002948 Pluchino, 2016, The fetal brain: role of progesterone and allopregnanolone, Horm. Mol. Biol. Clin. Investig., 27, 29 Moisiadis, 2014, Glucocorticoids and fetal programming part 1: outcomes, Nat. Rev. Endocrinol., 10, 391, 10.1038/nrendo.2014.73 Manson, 2008, Prenatal exposure to sex steroid hormones and behavioral/cognitive outcomes, Metabolism, 57, S16, 10.1016/j.metabol.2008.07.010 Bannenberg, 2010, Specialized pro-resolving lipid mediators in the inflammatory response: an update, Biochim. Biophys. Acta, 1801, 1260, 10.1016/j.bbalip.2010.08.002 Ruff, 2017, The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents, PLoS One, 12, 10.1371/journal.pone.0184653 Alves de Alencar Rocha, 2017, Early- versus late-onset Fetal growth restriction differentially affects the development of the Fetal sheep brain, Dev. Neurosci., 39, 141, 10.1159/000456542 Ludwig, 2018, Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial, Mol. Syst. Biol., 14, 10.15252/msb.20178126