SUMO and SUMOylation in Plants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bayer, 1998, Structure determination of the small ubiquitin-related modifier SUMO-1, J. Mol. Biol, 280, 275, 10.1006/jmbi.1998.1839
Bernier-Villamor, 2002, Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1, Cell, 108, 345, 10.1016/S0092-8674(02)00630-X
Boddy, 1966, PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia, Oncogene, 13, 971
Bohren, 2004, A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus, J. Biol. Chem, 279, 27233, 10.1074/jbc.M402273200
Budhiraja, 2009, substrates related to chromatin and to rna-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation, Plant Physiol, 149, 1529, 10.1104/pp.108.135053
Castillo, 2004, Interaction between a geminivirus replication protein and the plant sumoylation system, J. Virol, 78, 1758, 10.1128/JVI.78.6.2758-2769.2004
Catala, 2007, The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses, Plant Cell, 19, 2952, 10.1105/tpc.106.049981
Chen, 1998, Characterization of mouse ubiquitin-like SMT3A and SMT3B cNDAS and gene/pseudo-genes, IUBMB Life, 46, 1161, 10.1080/15216549800204722
Cheong, 2009, Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes, Plant Physiol, 151, 1930, 10.1104/pp.109.143719
Chosed, 2006, Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation, Biochem. J, 398, 521, 10.1042/BJ20060426
Chupreta, 2005, A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties, Mol. Cell. Biol, 25, 4272, 10.1128/MCB.25.10.4272-4282.2005
Clarke, 2004, Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana, Plant J, 38, 432, 10.1111/j.1365-313X.2004.02054.x
Colby, 2006, SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis, Plant Physiol, 142, 318, 10.1104/pp.106.085415
Conti, 2008, Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis, Plant Cell, 20, 2894, 10.1105/tpc.108.058669
Delaney, 1994, A central role of salicylic acid in plant disease resistance, Science, 266, 1247, 10.1126/science.266.5188.1247
Elrouby, 2010, Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes, Proc. Natl. Acad. Sci. USA, 107, 17415, 10.1073/pnas.1005452107
Garcia-Dominguez, 2008, The PHD domain of plant pias proteins mediates sumoylation of bromodomain GTE proteins, J. Biol. Chem, 283, 21469, 10.1074/jbc.M708176200
Geiss-Friedlander, 2007, Concepts in sumoylation: a decade on, Nat. Rev. Mol. Cell Biol, 8, 947, 10.1038/nrm2293
Gill, 2004, SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?, Gene Dev, 18, 2046, 10.1101/gad.1214604
Golebiowski, 2009, System-wide changes to SUMO modifications in response to heat shock, Sci. Signal, 2, ra24, 10.1126/scisignal.2000282
Grabbe, 2009, Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins, Chem. Rev, 109, 1481, 10.1021/cr800413p
Guo, 2007, Signalling pathways and the regulation of SUMO modification, Biochem. Soc. Trans, 35, 1414, 10.1042/BST0351414
Hanania, 1999, Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death, Plant J, 19, 533, 10.1046/j.1365-313X.1999.00547.x
Hannich, 2005, Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae, J. Biol. Chem, 280, 4102, 10.1074/jbc.M413209200
Hecker, 2006, Specification of SUMO1- and SUMO2-interacting motifs, J. Biol. Chem, 281, 16117, 10.1074/jbc.M512757200
Hermkes, 2011, Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1, Planta, 233, 63, 10.1007/s00425-010-1281-z
Hotson, 2004, Cysteine proteases in phyto-pathogenic bacteria: identification of plant targets and activation of innate immunity, Curr. Opin. Plant Biol, 7, 384, 10.1016/j.pbi.2004.05.003
Huang, 2009, The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root, Plant J, 60, 666, 10.1111/j.1365-313X.2009.03992.x
Ishida, 2009, SUMO E3 Ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis, Plant Cell, 21, 2284, 10.1105/tpc.109.068072
Jin, 2008, The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure, Plant J, 53, 530, 10.1111/j.1365-313X.2007.03359.x
Johnson, 2004, Protein modification by SUMO, Annu. Rev. Biochem, 73, 355, 10.1146/annurev.biochem.73.011303.074118
Kim, 2008, XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves, Plant Cell, 20, 1915, 10.1105/tpc.108.058529
Knipscheer, 2007, Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation, EMBO J, 26, 2797, 10.1038/sj.emboj.7601711
Knipscheer, 2008, Ubc9 Sumoylation regulates SUMO target discrimination, Mol. Cell, 31, 371, 10.1016/j.molcel.2008.05.022
Kroetz, 2009, Identification of SUMOinteracting proteins by yeast two-hybrid analysis, Methods Mol. Biol, 497, 107, 10.1007/978-1-59745-566-4_7
Kurepa, 2003, The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of sumo1 and -2 conjugates is increased by stress, J. Biol. Chem, 278, 6862, 10.1074/jbc.M209694200
Larkindale, 2005, Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance, Plant Physiol, 138, 882, 10.1104/pp.105.062257
Lee, 2006, Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase, Plant J, 49, 79, 10.1111/j.1365-313X.2006.02947.x
Li, 2000, Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein, Nucleic Acids Res, 28, 1145, 10.1093/nar/28.5.1145
Lin, 2009, Molecular regulators of phosphate homeostasis in plants, J. Exp. Bot, 60, 1427, 10.1093/jxb/ern303
Lois, 2003, Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis, Plant Cell, 15, 1347, 10.1105/tpc.009902
Mannen, 1996, Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene, Biochem. Biophys. Res. Commun, 222, 178, 10.1006/bbrc.1996.0717
Matunis, 1996, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex, J. Cell Biol, 135, 1457, 10.1083/jcb.135.6.1457
Matunis, 1998, SUMO-1 modification and its role in targeting the Ran GTPase-activating Protein, Ran-GAP1, to the nuclear pore complex, J. Cell Biol, 140, 499, 10.1083/jcb.140.3.499
Melchior, 2000, SUMO-nonclassical ubiquitin, Annu. Rev. Cell Dev. Biol, 16, 591, 10.1146/annurev.cellbio.16.1.591
Meluh, 1995, Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C, Mol. Biol. Cell, 6, 793, 10.1091/mbc.6.7.793
Merrill, 2010, A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity, PLos one, 5, e8794, 10.1371/journal.pone.0008794
Miller, 2010, Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc, Natl. Acad. Sci. USA, 107, 16512, 10.1073/pnas.1004181107
Minty, 2000, Covalent modification of p73α by SUMO-1, J. Biol. Chem, 275, 36316, 10.1074/jbc.M004293200
Miura, 2010, Sumoylation and other ubiquitin-like post-translational modifications in plants, Trends Cell Biol, 20, 223, 10.1016/j.tcb.2010.01.007
Miura, 2005, The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses, Proc. Natl. Acad. Sci. USA, 102, 7760, 10.1073/pnas.0500778102
Miura, 2007, Sumoylation, a post-translational regulatory process in plants, Curr. Opin. Plant Biol, 10, 495, 10.1016/j.pbi.2007.07.002
Miura, 2007, SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis, Plant Cell, 19, 1403, 10.1105/tpc.106.048397
Miura, 2009, Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling, Proc. Natl. Acad. Sci. USA, 106, 5418, 10.1073/pnas.0811088106
Miura, 2010, SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid, Plant Cell Physiol, 51, 103, 10.1093/pcp/pcp171
Murtas, 2003, A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitin-related modifier conjugates, Plant Cell, 15, 2308, 10.1105/tpc.015487
Okura, 1996, Protection against Fas/ APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin, J. Immunol, 157, 4277, 10.4049/jimmunol.157.10.4277
Orth, 2000, Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease, Science, 290, 1594, 10.1126/science.290.5496.1594
Park, 2010, Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice, Plant Cell Environ, 33, 1923, 10.1111/j.1365-3040.2010.02195.x
Park, 2011, Identification and molecular properties of SUMO-binding proteins in Arabidopsis, Mol. Cells, 32, 143, 10.1007/s10059-011-2297-3
Park, 2011, Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1, Nat. Commun, 2, 400, 10.1038/ncomms1408
Perry, 2008, A SIM-ultaneous role for SUMO and ubiquitin, Trends Biochem. Sci, 33, 201, 10.1016/j.tibs.2008.02.001
Potts, 2005, Human MMS21/NSE2 is a sumo ligase required for DNA repair, Mol. Cell. Biol, 25, 7021, 10.1128/MCB.25.16.7021-7032.2005
Reed, J.M., Dervinis, C., Morse, A.M., and Davis, J.M. (2010). The SUMO conjugation pathway in Populus: genomic analysis, tissue-specific and inducible Sumoylation and in vitro de-SUMOylation. Planta 232.
Reeves, 2002, early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC, Development, 129, 5349, 10.1242/dev.00113
Roden, 2004, Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells, Mol. Plant Microbe Interact, 17, 633, 10.1094/MPMI.2004.17.6.633
Saitoh, 2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3, J. Biol. Chem, 275, 6252, 10.1074/jbc.275.9.6252
Saracco, 2007, Genetic analysis of sumoylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential, Plant Physiol, 145, 119, 10.1104/pp.107.102285
Seeler, 2003, Nuclear and unclear functions of SUMO, Nat. Rev. Mol. Cell Biol, 4, 690, 10.1038/nrm1200
Sekiyama, 2008, Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3, J. Biol. Chem, 283, 35966, 10.1074/jbc.M802528200
Shen, 1996, Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system, Genomics, 37, 183, 10.1006/geno.1996.0540
Shen, 1996, UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins, Genomics, 36, 271, 10.1006/geno.1996.0462
Song, 2004, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins, Proc. Natl. Acad. Sci. USA, 101, 14373, 10.1073/pnas.0403498101
Song, 2005, Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif, J. Biol. Chem, 280, 40122, 10.1074/jbc.M507059200
Tatham, 2001, Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9, J. Biol. Chem, 276, 35368, 10.1074/jbc.M104214200
Thangasamy, 2011, Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence, New Phytol, 189, 869, 10.1111/j.1469-8137.2010.03538.x
Ulrich, 2005, Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest, Trends Cell Biol, 15, 525, 10.1016/j.tcb.2005.08.002
van den Burg, 2010, Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense, Plant Cell, 22, 1998, 10.1105/tpc.109.070961
Vijay-Kumar, 1987, Structure of ubiquitin refined at 1.8 Å resolution, J. Mol. Biol, 194, 531, 10.1016/0022-2836(87)90679-6
Walden, 2003, Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8, Nature, 422, 330, 10.1038/nature01456
Wang, 2011, OsSIZ1 regulates the vegetative growth and reproductive development in rice, Plant Mol. Biol. Rep, 29, 411, 10.1007/s11105-010-0232-y
Wilkinson, 2010, Mechanisms, regulation and consequences of protein SUMOylation, Biochem. J, 428, 133, 10.1042/BJ20100158
Xu, 2006, Dissecting the ubiquitin pathway by mass spectrometry, Biochim. Biophys. Acta, 1764, 1940, 10.1016/j.bbapap.2006.09.004
Xu, 2007, Nuclear pore anchor, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development, Plant Cell, 19, 1537, 10.1105/tpc.106.049239
Yang, 2010, The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif, Mol. Cell. Biol, 30, 2193, 10.1128/MCB.01510-09
Yoo, 2006, SIZ1 small ubiquitin-like modifier E3 Ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid, Plant Physiol, 142, 1548, 10.1104/pp.106.088831
Zhang, 2010, Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development, Plant Signal Behav, 5, 1, 10.4161/psb.5.1.10158