SUMO and SUMOylation in Plants

Hyojin Park1, Woe‐Yeon Kim1, Hyeong Cheol Park1, Sang Yeol Lee1, Hans J. Bohnert1, Dae‐Jin Yun1
1Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bayer, 1998, Structure determination of the small ubiquitin-related modifier SUMO-1, J. Mol. Biol, 280, 275, 10.1006/jmbi.1998.1839

Bernier-Villamor, 2002, Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1, Cell, 108, 345, 10.1016/S0092-8674(02)00630-X

Boddy, 1966, PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia, Oncogene, 13, 971

Bohren, 2004, A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus, J. Biol. Chem, 279, 27233, 10.1074/jbc.M402273200

Budhiraja, 2009, substrates related to chromatin and to rna-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation, Plant Physiol, 149, 1529, 10.1104/pp.108.135053

Castillo, 2004, Interaction between a geminivirus replication protein and the plant sumoylation system, J. Virol, 78, 1758, 10.1128/JVI.78.6.2758-2769.2004

Catala, 2007, The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses, Plant Cell, 19, 2952, 10.1105/tpc.106.049981

Chen, 1998, Characterization of mouse ubiquitin-like SMT3A and SMT3B cNDAS and gene/pseudo-genes, IUBMB Life, 46, 1161, 10.1080/15216549800204722

Cheong, 2009, Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes, Plant Physiol, 151, 1930, 10.1104/pp.109.143719

Chosed, 2006, Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation, Biochem. J, 398, 521, 10.1042/BJ20060426

Chupreta, 2005, A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties, Mol. Cell. Biol, 25, 4272, 10.1128/MCB.25.10.4272-4282.2005

Clarke, 2004, Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana, Plant J, 38, 432, 10.1111/j.1365-313X.2004.02054.x

Colby, 2006, SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis, Plant Physiol, 142, 318, 10.1104/pp.106.085415

Conti, 2008, Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis, Plant Cell, 20, 2894, 10.1105/tpc.108.058669

Delaney, 1994, A central role of salicylic acid in plant disease resistance, Science, 266, 1247, 10.1126/science.266.5188.1247

Denuc, 2010, SUMO and ubiquitin paths converge, Biochem. Soc. Trans, 038, 34, 10.1042/BST0380034

Elrouby, 2010, Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes, Proc. Natl. Acad. Sci. USA, 107, 17415, 10.1073/pnas.1005452107

Garcia-Dominguez, 2008, The PHD domain of plant pias proteins mediates sumoylation of bromodomain GTE proteins, J. Biol. Chem, 283, 21469, 10.1074/jbc.M708176200

Geiss-Friedlander, 2007, Concepts in sumoylation: a decade on, Nat. Rev. Mol. Cell Biol, 8, 947, 10.1038/nrm2293

Gill, 2004, SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?, Gene Dev, 18, 2046, 10.1101/gad.1214604

Golebiowski, 2009, System-wide changes to SUMO modifications in response to heat shock, Sci. Signal, 2, ra24, 10.1126/scisignal.2000282

Grabbe, 2009, Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins, Chem. Rev, 109, 1481, 10.1021/cr800413p

Guo, 2007, Signalling pathways and the regulation of SUMO modification, Biochem. Soc. Trans, 35, 1414, 10.1042/BST0351414

Hanania, 1999, Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death, Plant J, 19, 533, 10.1046/j.1365-313X.1999.00547.x

Hannich, 2005, Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae, J. Biol. Chem, 280, 4102, 10.1074/jbc.M413209200

Hecker, 2006, Specification of SUMO1- and SUMO2-interacting motifs, J. Biol. Chem, 281, 16117, 10.1074/jbc.M512757200

Hermkes, 2011, Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1, Planta, 233, 63, 10.1007/s00425-010-1281-z

Hotson, 2004, Cysteine proteases in phyto-pathogenic bacteria: identification of plant targets and activation of innate immunity, Curr. Opin. Plant Biol, 7, 384, 10.1016/j.pbi.2004.05.003

Huang, 2009, The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root, Plant J, 60, 666, 10.1111/j.1365-313X.2009.03992.x

Ishida, 2009, SUMO E3 Ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis, Plant Cell, 21, 2284, 10.1105/tpc.109.068072

Jin, 2008, The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure, Plant J, 53, 530, 10.1111/j.1365-313X.2007.03359.x

Johnson, 2004, Protein modification by SUMO, Annu. Rev. Biochem, 73, 355, 10.1146/annurev.biochem.73.011303.074118

Kerscher, 2007, SUMO junction-what’s your function?, EMBO Rep, 8, 550, 10.1038/sj.embor.7400980

Kim, 2008, XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves, Plant Cell, 20, 1915, 10.1105/tpc.108.058529

Knipscheer, 2007, Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation, EMBO J, 26, 2797, 10.1038/sj.emboj.7601711

Knipscheer, 2008, Ubc9 Sumoylation regulates SUMO target discrimination, Mol. Cell, 31, 371, 10.1016/j.molcel.2008.05.022

Kroetz, 2009, Identification of SUMOinteracting proteins by yeast two-hybrid analysis, Methods Mol. Biol, 497, 107, 10.1007/978-1-59745-566-4_7

Kurepa, 2003, The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of sumo1 and -2 conjugates is increased by stress, J. Biol. Chem, 278, 6862, 10.1074/jbc.M209694200

Larkindale, 2005, Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance, Plant Physiol, 138, 882, 10.1104/pp.105.062257

Lee, 2006, Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase, Plant J, 49, 79, 10.1111/j.1365-313X.2006.02947.x

Li, 2000, Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein, Nucleic Acids Res, 28, 1145, 10.1093/nar/28.5.1145

Lin, 2009, Molecular regulators of phosphate homeostasis in plants, J. Exp. Bot, 60, 1427, 10.1093/jxb/ern303

Lois, 2003, Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis, Plant Cell, 15, 1347, 10.1105/tpc.009902

Mannen, 1996, Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene, Biochem. Biophys. Res. Commun, 222, 178, 10.1006/bbrc.1996.0717

Matunis, 1996, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex, J. Cell Biol, 135, 1457, 10.1083/jcb.135.6.1457

Matunis, 1998, SUMO-1 modification and its role in targeting the Ran GTPase-activating Protein, Ran-GAP1, to the nuclear pore complex, J. Cell Biol, 140, 499, 10.1083/jcb.140.3.499

Melchior, 2000, SUMO-nonclassical ubiquitin, Annu. Rev. Cell Dev. Biol, 16, 591, 10.1146/annurev.cellbio.16.1.591

Meluh, 1995, Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C, Mol. Biol. Cell, 6, 793, 10.1091/mbc.6.7.793

Merrill, 2010, A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity, PLos one, 5, e8794, 10.1371/journal.pone.0008794

Miller, 2010, Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc, Natl. Acad. Sci. USA, 107, 16512, 10.1073/pnas.1004181107

Minty, 2000, Covalent modification of p73α by SUMO-1, J. Biol. Chem, 275, 36316, 10.1074/jbc.M004293200

Miura, 2010, Sumoylation and other ubiquitin-like post-translational modifications in plants, Trends Cell Biol, 20, 223, 10.1016/j.tcb.2010.01.007

Miura, 2005, The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses, Proc. Natl. Acad. Sci. USA, 102, 7760, 10.1073/pnas.0500778102

Miura, 2007, Sumoylation, a post-translational regulatory process in plants, Curr. Opin. Plant Biol, 10, 495, 10.1016/j.pbi.2007.07.002

Miura, 2007, SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis, Plant Cell, 19, 1403, 10.1105/tpc.106.048397

Miura, 2009, Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling, Proc. Natl. Acad. Sci. USA, 106, 5418, 10.1073/pnas.0811088106

Miura, 2010, SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid, Plant Cell Physiol, 51, 103, 10.1093/pcp/pcp171

Murtas, 2003, A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitin-related modifier conjugates, Plant Cell, 15, 2308, 10.1105/tpc.015487

Okura, 1996, Protection against Fas/ APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin, J. Immunol, 157, 4277, 10.4049/jimmunol.157.10.4277

Orth, 2000, Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease, Science, 290, 1594, 10.1126/science.290.5496.1594

Park, 2010, Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice, Plant Cell Environ, 33, 1923, 10.1111/j.1365-3040.2010.02195.x

Park, 2011, Identification and molecular properties of SUMO-binding proteins in Arabidopsis, Mol. Cells, 32, 143, 10.1007/s10059-011-2297-3

Park, 2011, Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1, Nat. Commun, 2, 400, 10.1038/ncomms1408

Perry, 2008, A SIM-ultaneous role for SUMO and ubiquitin, Trends Biochem. Sci, 33, 201, 10.1016/j.tibs.2008.02.001

Potts, 2005, Human MMS21/NSE2 is a sumo ligase required for DNA repair, Mol. Cell. Biol, 25, 7021, 10.1128/MCB.25.16.7021-7032.2005

Reed, J.M., Dervinis, C., Morse, A.M., and Davis, J.M. (2010). The SUMO conjugation pathway in Populus: genomic analysis, tissue-specific and inducible Sumoylation and in vitro de-SUMOylation. Planta 232.

Reeves, 2002, early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC, Development, 129, 5349, 10.1242/dev.00113

Roden, 2004, Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells, Mol. Plant Microbe Interact, 17, 633, 10.1094/MPMI.2004.17.6.633

Saitoh, 2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3, J. Biol. Chem, 275, 6252, 10.1074/jbc.275.9.6252

Saracco, 2007, Genetic analysis of sumoylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential, Plant Physiol, 145, 119, 10.1104/pp.107.102285

Seeler, 2003, Nuclear and unclear functions of SUMO, Nat. Rev. Mol. Cell Biol, 4, 690, 10.1038/nrm1200

Sekiyama, 2008, Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3, J. Biol. Chem, 283, 35966, 10.1074/jbc.M802528200

Shen, 1996, Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system, Genomics, 37, 183, 10.1006/geno.1996.0540

Shen, 1996, UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins, Genomics, 36, 271, 10.1006/geno.1996.0462

Song, 2004, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins, Proc. Natl. Acad. Sci. USA, 101, 14373, 10.1073/pnas.0403498101

Song, 2005, Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif, J. Biol. Chem, 280, 40122, 10.1074/jbc.M507059200

Tatham, 2001, Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9, J. Biol. Chem, 276, 35368, 10.1074/jbc.M104214200

Thangasamy, 2011, Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence, New Phytol, 189, 869, 10.1111/j.1469-8137.2010.03538.x

Ulrich, 2005, Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest, Trends Cell Biol, 15, 525, 10.1016/j.tcb.2005.08.002

van den Burg, 2010, Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense, Plant Cell, 22, 1998, 10.1105/tpc.109.070961

Vijay-Kumar, 1987, Structure of ubiquitin refined at 1.8 Å resolution, J. Mol. Biol, 194, 531, 10.1016/0022-2836(87)90679-6

Walden, 2003, Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8, Nature, 422, 330, 10.1038/nature01456

Wang, 2009, Sumoylation and desumoylation at a glance, J. Cell Sci, 122, 4249, 10.1242/jcs.050542

Wang, 2011, OsSIZ1 regulates the vegetative growth and reproductive development in rice, Plant Mol. Biol. Rep, 29, 411, 10.1007/s11105-010-0232-y

Wilkinson, 2010, Mechanisms, regulation and consequences of protein SUMOylation, Biochem. J, 428, 133, 10.1042/BJ20100158

Xu, 2006, Dissecting the ubiquitin pathway by mass spectrometry, Biochim. Biophys. Acta, 1764, 1940, 10.1016/j.bbapap.2006.09.004

Xu, 2007, Nuclear pore anchor, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development, Plant Cell, 19, 1537, 10.1105/tpc.106.049239

Yang, 2010, The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif, Mol. Cell. Biol, 30, 2193, 10.1128/MCB.01510-09

Yoo, 2006, SIZ1 small ubiquitin-like modifier E3 Ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid, Plant Physiol, 142, 1548, 10.1104/pp.106.088831

Zhang, 2010, Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development, Plant Signal Behav, 5, 1, 10.4161/psb.5.1.10158

Zhu, 2008, Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification, J. Biol. Chem, 283, 29405, 10.1074/jbc.M803632200