STRUCTURE-FUNCTION ASPECTS IN THE NITRIC OXIDE SYNTHASES

Annual Review of Pharmacology and Toxicology - Tập 37 Số 1 - Trang 339-359 - 1997
Dennis J. Stuehr1,2
1Department of Immunology, The Cleveland Clinic, Cleveland, Ohio 44195
2Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106

Tóm tắt

▪ Abstract  Research on the biological roles of nitric oxide has revealed that it functions as an important signal and effector molecule in a variety of physiologic and pathologic settings. In animals, nitric oxide is synthesized enzymatically from l-arginine through the actions of the nitric oxide synthases (NOSs). The three known NOS isoforms are all dimeric, bi-domain enzymes that contain iron protoporphyrin IX, flavin adenine dinucleotide, flavin mononucleotide, and tetrahydrobiopterin as bound prosthetic groups. This chapter summarizes information regarding the structure-function aspects of the NOSs, which includes composition of the domains, the protein residues and regions involved in prosthetic group binding, catalytic properties of the domains, the relationship between dimeric structure and prosthetic group binding and function, and factors that control assembly of NOS in cells. A general model for NOS structure and assembly is presented.

Từ khóa


Tài liệu tham khảo

10.1515/bchm3.1995.376.3.179

10.1096/fasebj.6.12.1381691

10.1021/jm00022a001

10.1146/annurev.ph.57.030195.003343

10.1146/annurev.ph.57.030195.003513

10.1016/0092-8674(94)90267-4

10.1146/annurev.ph.57.030195.003423

Marletta MA, 1993, J. Biol. Chem., 268, 12231, 10.1016/S0021-9258(18)31375-9

10.1146/annurev.nu.14.070194.001023

Nathan CF, 1994, J. Biol. Chem., 269, 13725, 10.1016/S0021-9258(17)36703-0

10.1016/S0092-8674(00)81053-3

10.1038/351714a0

10.1073/pnas.89.14.6348

Lyons CR, 1992, J. Biol. Chem., 267, 6370, 10.1016/S0021-9258(18)42704-4

10.1126/science.1373522

10.1016/0968-0004(91)90059-5

10.1073/pnas.88.17.7773

Hevel JM, 1991, J. Biol. Chem., 266, 22789, 10.1016/S0021-9258(18)54421-5

10.1016/0014-5793(91)81031-3

10.1021/bi00127a028

10.1021/bi00146a019

Stuehr DJ, 1992, J. Biol. Chem., 267, 20547, 10.1016/S0021-9258(19)36718-3

10.1073/pnas.89.23.11141

10.1042/bj2880015

Sheta EA, 1994, J. Biol. Chem., 269, 15147, 10.1016/S0021-9258(17)36585-7

10.1021/bi00003a013

10.1021/bi00011a025

10.1074/jbc.271.34.20594

10.1074/jbc.271.24.14631

10.1021/bi960607l

Xie Q-W, 1994, J. Biol. Chem., 269, 28500, 10.1016/S0021-9258(18)46955-4

10.1021/bi00074a020

10.1074/jbc.271.1.62

10.1111/j.1432-1033.1995.701_3.x

10.1021/bi00048a006

10.1074/jbc.271.11.6435

10.1021/bi960445t

10.1074/jbc.270.26.15463

Wang J, 1993, J. Biol. Chem., 268, 22255, 10.1016/S0021-9258(18)41519-0

10.1074/jbc.270.18.10544

10.1006/bbrc.1993.1380

10.1021/bi952582g

10.1073/pnas.93.10.4891

Chen P-F, 1994, J. Biol. Chem., 269, 25062, 10.1016/S0021-9258(17)31498-9

10.1006/bbrc.1995.1104

10.1073/pnas.92.25.11514

Baek KJ, 1993, J. Biol. Chem., 268, 21120, 10.1016/S0021-9258(19)36901-7

10.1074/jbc.271.13.7336

10.1006/bbrc.1995.1659

Chen P-F, 1994, J. Biol. Chem., 269, 5062

Narhi LO, 1987, J. Biol. Chem., 262, 6683, 10.1016/S0021-9258(18)48296-8

10.1002/j.1460-2075.1995.tb00038.x

Kubo Y, 1988, J. Biol. Chem., 263, 19684, 10.1016/S0021-9258(19)77690-X

Southerland WM, 1978, J. Biol. Chem., 253, 8747, 10.1016/S0021-9258(17)34240-0

10.1074/jbc.270.46.27403

10.1073/pnas.92.18.8428

10.1006/bbrc.1996.0238

10.1074/jbc.271.19.11462

10.1016/0014-5793(95)01496-9

10.1006/bbrc.1996.0763

10.1074/jbc.270.46.27423

Garvey EP, 1994, J. Biol. Chem., 269, 26669, 10.1016/S0021-9258(18)47071-8

Klatt P, 1994, J. Biol. Chem., 269, 13861, 10.1016/S0021-9258(17)36726-1

Matsuko A, 1994, J. Biol. Chem., 269, 20335, 10.1016/S0021-9258(17)31996-8

10.1073/pnas.91.22.10512

10.1021/bi960476o

10.1074/jbc.270.30.17791

Deleted in proof

10.1021/bi00006a014

10.1021/bi00036a003

10.1073/pnas.90.22.10769

Abu-Soud HM, 1994, J. Biol. Chem., 269, 32318, 10.1016/S0021-9258(18)31638-7

10.1021/bi00035a023

10.1074/jbc.271.13.7309

Deleted in proof

10.1021/bi9521295

10.1016/0076-6879(86)31043-7

10.1021/bi952844e

Gross SS, 1992, J. Biol. Chem., 267, 25722, 10.1016/S0021-9258(18)35667-9

10.1073/pnas.92.25.11771

10.1042/bj3040683

10.1111/j.1432-1033.1995.tb20533.x

10.1021/bi00253a010

10.1074/jbc.271.10.5414

Sakai N, 1992, Mol. Pharmacol., 43, 6

10.3181/00379727-203-43566A

10.1021/bi00168a003

10.1042/bj3100533

Hibbs JBJr , Taintor RR, Vavrin Z, Granger DL, Drapier JC, et al. 1990. Synthesis of nitric oxide from a terminal guandino nitrogen ofl-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. InNitric Oxide froml-arginine: A Bioregulatory System, ed. S Moncada, EA Higgs, pp. 189–223. Amsterdam: Elsevier Sci.

10.1091/mbc.4.1.1

10.1074/jbc.270.11.5710

10.1073/pnas.90.23.11147

10.1073/pnas.91.9.3559

Assreuy J, 1993, J. Pharmacol., 103, 833

10.1084/jem.176.2.599