STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

Nucleic Acids Research - Tập 47 Số D1 - Trang D607-D613 - 2019
Damian Szklarczyk1, Annika L Gable1, David Lyon1, Alexander Junge2, Michael Williamson1, Jaime Huerta‐Cepas3, Milan Simonovic1, Mario Albrecht4,2, John H. Morris5, Peer Bork6,7,8,9, Lars Juhl Jensen2, Christian von Mering1
1Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
2Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
3Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain
4Center for non-coding RNA in Technology and Health, University of Copenhagen, 2200 Copenhagen N, Denmark
5Resource on Biocomputing, Visualization, and Informatics, University of California, San Francisco, CA 94158-2517, USA
6Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
7Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
8Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69117 Heidelberg, Germany
9Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xie, 2005, Functional coverage of the human genome by existing structures, structural genomics targets, and homology models, PLoS Comput. Biol., 1, e31, 10.1371/journal.pcbi.0010031

Uhlen, 2010, Towards a Knowledge-Based human protein atlas, Nat. Biotechnol., 28, 1248, 10.1038/nbt1210-1248

UniProt Consortium, T, 2018, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 45, D158, 10.1093/nar/gkw1099

Ban, 2000, The complete atomic structure of the large ribosomal subunit at 2.4 A resolution, Science, 289, 905, 10.1126/science.289.5481.905

Schuller, 2018, Structure of the nuclear exosome captured on a maturing preribosome, Science, 360, 219, 10.1126/science.aar5428

Marsh, 2015, Structure, dynamics, assembly, and evolution of protein complexes, Annu. Rev. Biochem., 84, 551, 10.1146/annurev-biochem-060614-034142

Huang, 2018, Systematic evaluation of molecular networks for discovery of disease genes, Cell Syst., 6, 484, 10.1016/j.cels.2018.03.001

Khurana, 2017, Genome-scale networks link neurodegenerative disease genes to alpha-Synuclein through specific molecular pathways, Cell Syst., 4, 157, 10.1016/j.cels.2016.12.011

Hayashida, 2016, Complex network-based approaches to biomarker discovery, Biomark. Med., 10, 621, 10.2217/bmm-2015-0047

Chuang, 2007, Network-based classification of breast cancer metastasis, Mol. Syst. Biol., 3, 140, 10.1038/msb4100180

Liu, 2017, Quantifying critical states of complex diseases using single-sample dynamic network biomarkers, PLoS Comput. Biol., 13, e1005633, 10.1371/journal.pcbi.1005633

Gemovic, 2018, Mapping of Protein-Protein interactions: Web-Based resources for revealing interactomes, Curr. Med. Chem.

Sowmya, 2014, Protein-protein interactions and prediction: a comprehensive overview, Protein Pept. Lett., 21, 779, 10.2174/09298665113209990056

Drew, 2017, Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes, Mol. Syst. Biol., 13, 932, 10.15252/msb.20167490

Salwinski, 2004, The database of interacting proteins: 2004 update, Nucleic Acids Res., 32, D449, 10.1093/nar/gkh086

Orchard, 2014, The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res., 42, D358, 10.1093/nar/gkt1115

Chatr-Aryamontri, 2017, The BioGRID interaction database: 2017 update, Nucleic Acids Res., 45, D369, 10.1093/nar/gkw1102

Ammari, 2016, HPIDB 2.0: a curated database for host-pathogen interactions, Database (Oxford), 2016, baw103, 10.1093/database/baw103

Orchard, 2012, Protein interaction data curation: the International Molecular Exchange (IMEx) consortium, Nat. Methods, 9, 345, 10.1038/nmeth.1931

Zhang, 2013, PrePPI: a structure-informed database of protein-protein interactions, Nucleic Acids Res., 41, D828, 10.1093/nar/gks1231

McDowall, 2009, PIPs: human protein-protein interaction prediction database, Nucleic Acids Res., 37, D651, 10.1093/nar/gkn870

Franz, 2018, GeneMANIA update 2018, Nucleic Acids Res., 46, W60, 10.1093/nar/gky311

Ogris, 2018, FunCoup 4: new species, data, and visualization, Nucleic Acids Res., 46, D601, 10.1093/nar/gkx1138

Kotlyar, 2016, Integrated interactions database: tissue-specific view of the human and model organism interactomes, Nucleic Acids Res., 44, D536, 10.1093/nar/gkv1115

Herwig, 2016, Analyzing and interpreting genome data at the network level with ConsensusPathDB, Nat. Protoc., 11, 1889, 10.1038/nprot.2016.117

Wong, 2015, IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks, Nucleic Acids Res., 43, W128, 10.1093/nar/gkv486

Lee, 2011, Prioritizing candidate disease genes by network-based boosting of genome-wide association data, Genome Res., 21, 1109, 10.1101/gr.118992.110

Snel, 2000, STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene, Nucleic Acids Res., 28, 3442, 10.1093/nar/28.18.3442

Franceschini, 2013, STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 41, D808, 10.1093/nar/gks1094

Szklarczyk, 2015, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res., 43, D447, 10.1093/nar/gku1003

Szklarczyk, 2017, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Res., 45, D362, 10.1093/nar/gkw937

Huerta-Cepas, 2016, eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res., 44, D286, 10.1093/nar/gkv1248

Szklarczyk, 2016, STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data, Nucleic Acids Res., 44, D380, 10.1093/nar/gkv1277

Wang, 2015, Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines, Proteomics, 15, 3163, 10.1002/pmic.201400441

Palasca, 2018, TISSUES 2.0: an integrative web resource on mammalian tissue expression, Database (Oxford), 2018, bay003, 10.1093/database/bay003

Cook, 2018, Viruses.STRING: A virus–host protein–protein interaction database, Viruses, 10, 519, 10.3390/v10100519

Durinx, 2016, Identifying ELIXIR core data resources [version 2; referees: 2 approved], F1000Res, 5, 2422, 10.12688/f1000research.9656.1

Enright, 2001, Functional associations of proteins in entire genomes by means of exhaustive detection of gene fusions, Genome Biol., 2, RESEARCH0034, 10.1186/gb-2001-2-9-research0034

Snel, 2002, The identification of functional modules from the genomic association of genes, PNAS, 99, 5890, 10.1073/pnas.092632599

Studham, 2014, Functional association networks as priors for gene regulatory network inference, Bioinformatics, 30, i130, 10.1093/bioinformatics/btu285

Kanehisa, 2017, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res., 45, D353, 10.1093/nar/gkw1092

Walhout, 2000, Protein interaction mapping in C. elegans using proteins involved in vulval development, Science, 287, 116, 10.1126/science.287.5450.116

Yu, 2004, Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs, Genome Res., 14, 1107, 10.1101/gr.1774904

Huynen, 2000, Predicting protein function by genomic context: quantitative evaluation and qualitative inferences, Genome Res., 10, 1204, 10.1101/gr.10.8.1204

Skrabanek, 2008, Computational prediction of protein-protein interactions, Mol. Biotechnol., 38, 1, 10.1007/s12033-007-0069-2

Barrett, 2013, NCBI GEO: archive for functional genomics data sets–update, Nucleic Acids Res., 41, D991, 10.1093/nar/gks1193

Langfelder, 2008, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9, 559, 10.1186/1471-2105-9-559

Lachmann, 2018, Massive mining of publicly available RNA-seq data from human and mouse, Nat. Commun., 9, 1366, 10.1038/s41467-018-03751-6

Buttrey, 2015, treeClust: an R package for Tree-Based clustering dissimilarities, TheR Journal, 7, 227

Fabregat, 2016, The reactome pathway Knowledgebase, Nucleic Acids Res., 44, D481, 10.1093/nar/gkv1351

Caspi, 2016, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res., 44, D471, 10.1093/nar/gkv1164

The Gene Ontology, C, 2017, Expansion of the Gene Ontology knowledgebase and resources, Nucleic Acids Res., 45, D331, 10.1093/nar/gkw1108

Amberger, 2015, OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders, Nucleic Acids Res., 43, D789, 10.1093/nar/gku1205

Garcia-Campos, 2015, Pathway analysis: state of the art, Front. Physiol., 6, 383, 10.3389/fphys.2015.00383

Tarca, 2013, A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity, PLoS One, 8, e79217, 10.1371/journal.pone.0079217

Yu, 2017, A strategy for evaluating pathway analysis methods, BMC Bioinformatics, 18, 453, 10.1186/s12859-017-1866-7

Benyamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 57, 289, 10.1111/j.2517-6161.1995.tb02031.x

Cao, 2013, Going the distance for protein function prediction: a new distance metric for protein interaction networks, PLoS One, 8, e76339, 10.1371/journal.pone.0076339

Cao, 2014, New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence, Bioinformatics, 30, i219, 10.1093/bioinformatics/btu263

Matias Rodrigues, 2014, HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences, Bioinformatics, 30, 287, 10.1093/bioinformatics/btt657

van der Maaten, 2008, Visualizing data using t-SNE, J. Mach. Learn. Res., 9, 2579

Riker, 2008, The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis, BMC Med. Genomics, 1, 13, 10.1186/1755-8794-1-13