STM studies for surface-mounted molecular rotors: a mini review

Tianyi Yang1, Rui‐Qin Zhang1
1Department of Physics, City University of Hong Kong, SAR, Hong Kong, 999077, People’s Republic of China

Tóm tắt

AbstractA molecular rotor is a molecule/molecular system that performs rotary motions under an external stimulus. Molecular rotors are promising for applications in medicine, optical usage, information science, etc. A molecular rotor is also a crucial component in constructing more sophisticated functional molecular machines. Anchoring molecular rotors on surfaces is regarded as a feasible way of building functional molecular rotor systems. Scanning tunneling microscope (STM) is a powerful tool for studying surface dynamics in real space on atomic precision. It provides an ideal platform for both qualitatively and quantitively investigating single and self-assembled molecular rotors mounted on surfaces. Herein, we review a series of studies utilizing STM to unveil the methodologies that are increasingly used in the area of surface-mounted molecule rotors. A combined usage of these methodologies is more and more necessary for researchers to advance the molecular rotor study in future.

Từ khóa


Tài liệu tham khảo

V. Balzani, A. Credi, B. Ferrer, S. Silvi, M. Venturi, Articial molecular motors and machines: design principles and protype systems. Top. Curr. Chem. 262, 1–27 (2005). https://doi.org/10.1007/128_008

D. Stock, A.G. Leslie, J.E. Walker, Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999). https://doi.org/10.1126/science.286.5445.1700

A.M. Schoevaars, W. Kruizinga, R.W.J. Zijlstra, N. Veldman, A.L. Spek, B.L. Feringa, Toward a switchable molecular rotor. Unexpected dynamic behavior of functionalized overcrowded alkenes. J. Org. Chem. 62, 4943–4948 (1997). https://doi.org/10.1021/jo962210t

N. Koumura, R.W.J. Zijistra, R.A. Van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999). https://doi.org/10.1038/43646

N. Koumura, E.M. Geertsema, A. Meetsma, B.L. Feringa, Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000). https://doi.org/10.1021/ja002755b

A.A. Kulago, E.M. Mes, M. Klok, A. Meetsma, A.M. Brouwer, B.L. Feringa, Ultrafast light-driven nanomotors based on an acridane stator. J. Org. Chem. 75, 666–679 (2010). https://doi.org/10.1021/jo902207x

N. Harada, N. Koumura, R.W.J. Zijlstra, R.A. van Delden, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152–155 (2002). https://doi.org/10.1038/43646

J.C.M. Kistemaker, P. Štacko, D. Roke, A.T. Wolters, G.H. Heideman, M.C. Chang, P. Van Der Meulen, J. Visser, E. Otten, B.L. Feringa, Third-generation light-driven symmetric molecular motors. J. Am. Chem. Soc. 139, 9650–9661 (2017) https://doi.org/10.1021/jacs.7b04412

M. Schliwa, G. Woehlke, Molecular motors. Nature 422, 759–765 (2003) https://doi.org/10.1038/nature01601

D.W. Urry, Molecular machines: how motion and other functions of living organisms can result from reversible chemical changes. Angew. Chemie Int. Ed. English. 32, 819–841 (1993). https://doi.org/10.1002/anie.199308191

K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993). https://doi.org/10.1038/365721a0

R.D. Vale, R.A. Milligan, The way things move: looking under the hood of molecular motor proteins. Science 288, 88 (2000). https://doi.org/10.1126/science.288.5463.88

Y. Zhang, J.P. Calupitan, T. Rojas, R. Tumbleson, G. Erbland, C. Kammerer, T.M. Ajayi, S. Wang, L.A. Curtiss, A.T. Ngo, S.E. Ulloa, G. Rapenne, S.W. Hla, A chiral molecular propeller designed for unidirectional rotations on a surface. Nat. Commun. 10 (2019) https://doi.org/10.1038/s41467-019-11737-1

H.L. Tierney, C.J. Murphy, A.D. Jewell, A.E. Baber, E.V. Iski, H.Y. Khodaverdian, A.F. McGuire, N. Klebanov, E.C.H. Sykes, Experimental demonstration of a single-molecule electric motor. Nat. Nanotechnol. 6, 625–629 (2011) https://doi.org/10.1038/nnano.2011.142

L.J. Lauhon, W. Ho, Direct Observation of the Quantum Tunneling of Single Hydrogen Atoms with a Scanning Tunneling Microscope, Phys. Rev. Lett. 85, 4566–4569 (2000). https://doi.org/10.1103/PhysRevLett.85.4566

J.A. Stroscio, R.J. Celotta, Controlling the dynamics of a single atom in lateral atom manipulation. Science 306, 242–247 (2004). https://doi.org/10.1126/science.1102370

U.G.E. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives, J. Echeverria, M. Grisolia, G. Rapenne, C. Joachim, S.W. Hla, Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 8, 46–51 (2013). https://doi.org/10.1038/nnano.2012.218

G.J. Simpson, V. García-lópez, A.D. Boese, J.M. Tour, L. Grill, How to control single-molecule rotation, Nat. Commun. (n.d.) 1–6. https://doi.org/10.1038/s41467-019-12605-8

B.C. Stipe, M.A. Rezaei, W. Ho, Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1998). https://doi.org/10.1103/PhysRevLett.81.1263

A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Molecule cascades. Science 298, 1381–1387 (2002). https://doi.org/10.1126/science.1076768

L. Gao, Q. Liu, Y.Y. Zhang, N. Jiang, H.G. Zhang, Z.H. Cheng, W.F. Qiu, S.X. Du, Y.Q. Liu, W.A. Hofer, H. Gao, Constructing an array of anchored single-molecule rotors on gold surfaces. Phys. Rev. Lett. 197209, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.197209

J.V. Barth, R.J. Behm, H. Brune, G. Ertl, Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307 (1990). https://doi.org/10.1103/PhysRevB.42.9307

K. Wang, C. Zhang, M.M.T. Loy, X. Xiao, Time-dependent tunneling spectroscopy for studying surface diffusion confined in nanostructures. Phys. Rev. Lett. 94, 1–4 (2005). https://doi.org/10.1103/PhysRevLett.94.036103

K. Wang, G. Chen, C. Zhang, M.M.T. Loy, X. Xiao, Intermixing of Intrabasin and Interbasin Diffusion of a Single Ag Atom on Si(111)-(7×7). Phys. Rev. Lett. 101, 266107 (2008). https://doi.org/10.1103/PhysRevLett.101.266107

Q. Liu, Q. Fu, X. Shao, X. Ma, X. Wu, K. Wang, X. Xiao, Diffusion of single Au, Ag and Cu atoms inside Si(111)-(7×7) half unit cells: a comparative study. Appl. Surf. Sci. 401, 225–231 (2017). https://doi.org/10.1016/j.apsusc.2017.01.020

A.E. Baber, H.L. Tierney, E.C.H. Sykes, A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385–2391 (2008). https://doi.org/10.1021/nn800497y

R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960) https://resolver.caltech.edu/CaltechES:23.5.1960Bottom

Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005). https://doi.org/10.1021/nl051915k

G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473–487 (2009). https://doi.org/10.1021/ar8002317

Y. Shirai, J.F. Morin, T. Sasaki, J.M. Guerrero, J.M. Tour, Recent progress on nanovehicles. Chem. Soc. Rev. 35, 1043–1055 (2006). https://doi.org/10.1039/b514700j

T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S.R. Harutyunyan, K.-H. Ernst, B.L. Feringa, Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011). https://doi.org/10.1038/nature10587

G. Rapenne, C. Joachim, The first nanocar race. Nat. Rev. Mater. 2, 1–3 (2017). https://doi.org/10.1038/natrevmats.2017.40

G.J. Simpson, V. García-López, P. Petermeier, L. Grill, J.M. Tour, How to build and race a fast nanocar, Nat. Nanotechnol. 12 (2017). https://doi.org/10.1038/nnano.2017.137