STING là một yếu tố tiên lượng liên quan đến hoại tử khối u, sự suy biến sarcomatoid và di căn xa trong ung thư thận tế bào sáng
Tóm tắt
Từ khóa
#STING #ung thư thận tế bào sáng #hoại tử #suy biến sarcomatoid #di cănTài liệu tham khảo
Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS-STING pathway in health and disease. Nature reviews Genetics 20:657–674. https://doi.org/10.1038/s41576-019-0151-1
Cai X, Chiu Y-H, Chen ZJ (2014) The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Molecular cell 54:289–296. https://doi.org/10.1016/j.molcel.2014.03.040
Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792. https://doi.org/10.1038/nature08476
Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://doi.org/10.1038/nature07317
Archer KA, Durack J, Portnoy DA (2014) STING-dependent type I IFN production inhibits cell-mediated immunity to Listeria monocytogenes. PLoS pathogens 10:e1003861. https://doi.org/10.1371/journal.ppat.1003861
Lam E, Stein S, Falck-Pedersen E (2014) Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. Virology journal 88:974–981. https://doi.org/10.1128/JVI.02702-13
Maringer K, Fernandez-Sesma A (2014) Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine and Growth Factor Reviews 25:669–679. https://doi.org/10.1016/j.cytogfr.2014.08.004
Janko C, Schorn C, Grossmayer GE, Frey B, Herrmann M, Gaipl US, Munoz LE (2008) Inflammatory clearance of apoptotic remnants in systemic lupus erythematosus (SLE). Autoimmunity reviews 8:9–12. https://doi.org/10.1016/j.autrev.2008.07.015
Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA (2016) Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015-2040. Arthritis and Rheumatology (Hoboken, N.J.) 68:1582–1587. https://doi.org/10.1002/art.39692
Wei B, Xu L, Guo W, Wang Y, Wu J, Li X, Cai X, Hu J, Wang M, Xu Q, Liu W, Gu Y (2021) SHP2-mediated inhibition of DNA repair contributes to cGAS-STING activation and chemotherapeutic sensitivity in colon cancer. Cancer research 81(12):3215–3228. https://doi.org/10.1158/0008-5472.CAN-20-3738
Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M, Sundararaman SK, Tange S, Mitsuishi Y, Thai TC, Masuda S, Piel BP, Sholl LM, Kirschmeier PT, Paweletz CP, Watanabe H, Yajima M, Barbie DA (2019) Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discovery 9:34–45. https://doi.org/10.1158/2159-8290.CD-18-0689
Gilmore E, McCabe N, Kennedy RD, Parkes EE (2019) DNA repair deficiency in breast cancer: opportunities for immunotherapy. Journal of oncology 2019:4325105. https://doi.org/10.1155/2019/4325105
Caliò A, Brunelli M, Gobbo S, Pedron S, Segala D, Argani P, Martignoni G (2021) Stimulator of interferon genes (STING) immunohistochemical expression in the spectrum of perivascular epithelioid cell (PEC) lesions of the kidney. Pathology 53(5):579–585. https://doi.org/10.1016/j.pathol.2020.09.025
Msaouel P, Malouf GG, Su X, Yao H, Tripathi DN, Soeung M, Gao J, Rao P, Coarfa C, Creighton CJ, Bertocchio J-P, Kunnimalaiyaan S, Multani AS, Blando J, He R, Shapiro DD, Perelli L, Srinivasan S, Carbone F et al (2020) Comprehensive molecular characterization identifies distinct genomic and immune hallmarks of renal medullary carcinoma. Cancer Cell 37:720–734.e13. https://doi.org/10.1016/j.ccell.2020.04.002
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature medicine 24:541–550. https://doi.org/10.1038/s41591-018-0014-x
Takahara T, Murase Y, Tsuzuki T (2021) Urothelial carcinoma: variant histology, molecular subtyping, and immunophenotyping significant for treatment outcomes. Pathology 53:56–66. https://doi.org/10.1016/j.pathol.2020.09.004
Delahunt B, McKenney JK, Lohse CM, Leibovich BC, Thompson RH, Boorjian SA, Cheville JC (2013) A novel grading system for clear cell renal cell carcinoma incorporating tumor necrosis. American Journal of Surgical Pathology 37:311–322. https://doi.org/10.1097/PAS.0b013e318270f71c
WHO Classification of Tumours (2022) Urinary and male genital tumours, WHO Classification of Tumours Editorial Board, 5th edn. IARC press, Lyon
Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, Egevad L, Algaba F, Moch H, Grignon DJ, Montironi R, Srigley JR (2013) The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. American Journal of Surgical Pathology 37:1490–1504. https://doi.org/10.1097/PAS.0b013e318299f0fb
Samaratunga H, Delahunt B, Srigley JR, Berney DM, Cheng L, Evans A, Furusato B, Leite KRM, MacLennan GT, Martignoni G, Moch H, Pan C-C, Paner G, Ro J, Thunders M, Tsuzuki T, Wheeler T, van der Kwast T, Varma M et al (2020) Granular necrosis: a distinctive form of cell death in malignant tumours. Pathology 52:507–514. https://doi.org/10.1016/j.pathol.2020.06.002
Galfano A, Novara G, Iafrate M, Cavalleri S, Martignoni G, Gardiman M, D’Elia C, Patard JJ, Artibani W, Ficarra V (2008) Mathematical models for prognostic prediction in patients with renal cell carcinoma. Urologia internationalis 80:113–123. https://doi.org/10.1159/000112599
Lane BR, Kattan MW (2008) Prognostic models and algorithms in renal cell carcinoma. Urologic Clinics of North America 35:613–625. https://doi.org/10.1016/j.ucl.2008.07.003
Wang X, Xu H, Guo M, Shen Y, Li P, Wang Z, Zhan M (2021) The use of an oxidative stress scoring system in prognostic prediction for kidney renal clear cell carcinoma. Cancer communications (London, England) 41:354–357. https://doi.org/10.1002/cac2.12152
Massari F, Ciccarese C, Porcaro AB, Ferrero S, Gazzano G, Artibani W, Modena A, Bria E, Sava T, Caliò A, Novara G, Ficarra V, Chilosi M, Martignoni G, Bosari S, Cheng L, Tortora G, Brunelli M (2014) Quantitative score modulation of HSP90 and HSP27 in clear cell renal cell carcinoma. Pathology 46:523–526. https://doi.org/10.1097/PAT.0000000000000150
Freund A, Laberge R-M, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell 23:2066–2075. https://doi.org/10.1091/mbc.E11-10-0884
Glück S, Guey B, Gulen MF, Wolter K, Kang T-W, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L, Ablasser A (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature cell biology 19:1061–1070. https://doi.org/10.1038/ncb3586
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo S-R, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TWJ, Gajewski TF (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell reports 11:1018–1030. https://doi.org/10.1016/j.celrep.2015.04.031
Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A (2017) Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. Journal of Immunology 199:397–402. https://doi.org/10.4049/jimmunol.1601999
Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, Capell BC, Xu C, Xu M, Kieckhaefer JE, Jiang T, Shoshkes-Carmel M, Al Tanim KMA, Barber GN, Seykora JT et al (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–406. https://doi.org/10.1038/nature24050
Yang H, Wang H, Ren J, Chen Q, Chen ZJ (2017) cGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences 114:E4612–E4620. https://doi.org/10.1073/pnas.1705499114
Bakhoum SF, Landau DA (2017) Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harbor perspectives in medicine 7(6):a029611. https://doi.org/10.1101/cshperspect.a029611
Yan H, Lu W, Wang F (2023) The cGAS-STING pathway: a therapeutic target in chromosomally unstable cancers., Signal Transduct. Targeted Therapy 8:45. https://doi.org/10.1038/s41392-023-01328-4
Wang Y, Zhang Y (2020) Prognostic role of interleukin-6 in renal cell carcinoma: a meta-analysis. Clinical and Translational Oncology 22:835–843. https://doi.org/10.1007/s12094-019-02192-x
Davis D, Tretiakova MS, Kizzar C, Woltjer R, Krajbich V, Tykodi SS, Lanciault C, Andeen NK (2020) Abundant CD8+ tumor infiltrating lymphocytes and beta-2-microglobulin are associated with better outcome and response to interleukin-2 therapy in advanced stage clear cell renal cell carcinoma. Annals of diagnostic pathology 47:151537. https://doi.org/10.1016/j.anndiagpath.2020.151537
Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, Hutson TE, Kopyltsov E, Méndez-Vidal MJ, Kozlov V, Alyasova A, Hong S-H, Kapoor A, Alonso Gordoa T, Merchan JR, Winquist E, Maroto P, Goh JC et al (2021) Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma., N. The New England Journal of Medicine 384:1289–1300. https://doi.org/10.1056/NEJMoa2035716
Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, Mu XJ, Ching KA, Uemura M, Pal SK, Alekseev B, Gravis G, Campbell MT, Penkov K, Lee JL, Hariharan S, Wang X, Zhang W, Wang J et al (2020) Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nature medicine 26:1733–1741. https://doi.org/10.1038/s41591-020-1044-8
Powles T, Plimack ER, Soulières D, Waddell T, Stus V, Gafanov R, Nosov D, Pouliot F, Melichar B, Vynnychenko I, Azevedo SJ, Borchiellini D, McDermott RS, Bedke J, Tamada S, Yin L, Chen M, Molife LR, Atkins MB, Rini BI (2020) Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. The Lancet Oncology 21:1563–1573. https://doi.org/10.1016/S1470-2045(20)30436-8
Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N et al (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–472. https://doi.org/10.1038/nature25432
Hong C, Schubert M, Tijhuis AE, Requesens M, Roorda M, van den Brink A, Ruiz LA, Bakker PL, van der Sluis T, Pieters W, Chen M, Wardenaar R, van der Vegt B, Spierings DCJ, de Bruyn M, van Vugt MATM, Foijer F (2022) cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607:366–373. https://doi.org/10.1038/s41586-022-04847-2