Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
STAT3 và SPI1 có thể dẫn đến rối loạn hệ thống miễn dịch và phát triển xương dị hợp ở viêm khớp dính khớp
Tóm tắt
Nghiên cứu này nhằm mục tiêu xác định các sinh dấu cho chẩn đoán và tiết lộ những thay đổi trong môi trường vi mô miễn dịch ở viêm khớp dính khớp (AS). Bộ dữ liệu GSE73754 được tải xuống để xây dựng mạng đồng biểu hiện và phân tích tế bào miễn dịch. Phân tích tế bào học dòng chảy được thực hiện để xác nhận kết quả của phân tích bioinformatics. Phân tích làm giàu tập gen (GSEA) được thực hiện để điều tra các đặc điểm sinh học tiềm năng giữa các kiểu hình khác nhau. Phân tích tương quan Pearson giữa các gen trung tâm và điểm số xCell của các loại tế bào miễn dịch đã được thực hiện. Các gen trung tâm trong bộ dữ liệu GSE73754 được xác định là truyền tín hiệu và kích hoạt transcriptor 3 (STAT3) và gen tiền ung thư Spi-1 (SPI1). Kiểm định t cho thấy mức độ biểu hiện của STAT3 và SPI1 trong GSE73754 cao hơn đáng kể ở nhóm AS và nhóm kháng nguyên bạch cầu người (HLA)-B27(+). Phân tích tế bào dòng chảy cho thấy các tế bào NKT (tế bào T tự nhiên) được tăng cường, trong khi các tế bào Th1 bị giảm trong AS, điều này phù hợp với các kết quả thu được từ phân tích bioinformatics. STAT3 và SPI1 có mối tương quan với các tế bào NKT và tế bào Th1. STAT3 và SPI1 có thể là một thụ thể cytokine quan trọng trong tiến triển của bệnh ở AS.
Từ khóa
#viêm khớp dính khớp #sinh dấu #môi trường vi mô miễn dịch #STAT3 #SPI1 #tế bào miễn dịchTài liệu tham khảo
Kanwal A, Fazal S. Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis. Gene. 2018;638:41–51. https://doi.org/10.1016/j.gene.2017.09.049.
Fiorillo MT, Haroon N, Ciccia F, Breban M. Editorial: ankylosing spondylitis and related immune-mediated disorders. Front Immunol. 2019;10:1232. https://doi.org/10.3389/fimmu.2019.01232.
Wu Q, Cao F, Tao J, Li X, Zheng SG, Pan HF. Pentraxin 3: a promising therapeutic target for autoimmune diseases. Autoimmun Rev. 2020;19(12):102584. https://doi.org/10.1016/j.autrev.2020.102584.
Zhang X, Lu J, Pan Z, Ma Y, Liu R, Yang S, Yang S, Dong J, Shi X, Xu S, Pan F. DNA methylation and transcriptome signature of the IL12B gene in ankylosing spondylitis. Int Immunopharmacol. 2019;71:109–14. https://doi.org/10.1016/j.intimp.2019.03.026.
Selmi C. Autoimmunity in 2018. Clin Rev Allergy Immunol. 2019;56(3):375–84. https://doi.org/10.1007/s12016-019-08745-w.
Ermoza K, Glatigny S, Jah N, Camilo V, Mambu Mambueni H, Araujo LM, Chiocchia G, Breban M. Tolerogenic XCR1(+) dendritic cell population is dysregulated in HLA-B27 transgenic rat model of spondyloarthritis. Arthritis Res Ther. 2019;21(1):46. https://doi.org/10.1186/s13075-019-1827-9.
Dulic S, Vasarhelyi Z, Bajnok A, Szalay B, Toldi G, Kovacs L, Balog A. The impact of anti-TNF therapy on CD4+ and CD8+ cell subsets in ankylosing spondylitis. Pathobiol J Immunopathol Mol Cell Biol. 2018;85(3):201–10. https://doi.org/10.1159/000484250.
Müller B, Gimsa U, Mitchison NA, Radbruch A, Sieper J, Yin Z. Modulating the Th1/Th2 balance in inflammatory arthritis. Springer Semin Immunopathol. 1998;20(1–2):181–96. https://doi.org/10.1007/bf00832006.
Min HK, Choi J, Lee SY, Seo HB, Jung K, Na HS, Ryu JG, Kwok SK, Cho ML, Park SH. Protein inhibitor of activated STAT3 reduces peripheral arthritis and gut inflammation and regulates the Th17/Treg cell imbalance via STAT3 signaling in a mouse model of spondyloarthritis. J Transl Med. 2019;17(1):18. https://doi.org/10.1186/s12967-019-1774-x.
Li X, Wang J, Zhan Z, Li S, Zheng Z, Wang T, Zhang K, Pan H, Li Z, Zhang N, Liu H. Inflammation intensity-dependent expression of osteoinductive wnt proteins is critical for ectopic new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 2018;70(7):1056–70. https://doi.org/10.1002/art.40468.
Lories RJ, Haroon N. Bone formation in axial spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):765–77. https://doi.org/10.1016/j.berh.2014.10.008.
Tkaczuk J, Yu CL, Baksh S, Milford EL, Carpenter CB, Burakoff SJ, McKay DB. Effect of anti-IL-2Ralpha antibody on IL-2-induced Jak/STAT signaling. Am J Transplant. 2002;2(1):31–40. https://doi.org/10.1034/j.1600-6143.2002.020107.x.
van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361–8. https://doi.org/10.1002/art.1780270401.
Tang G, Yin W. Development of an immune infiltration-related prognostic scoring system based on the genomic landscape analysis of glioblastoma multiforme. Front Oncol. 2020;10:154. https://doi.org/10.3389/fonc.2020.00154.
Lin K, Huang J, Luo H, Luo C, Zhu X, Bu F, Xiao H, Xiao L, Zhu Z. Development of a prognostic index and screening of potential biomarkers based on immunogenomic landscape analysis of colorectal cancer. Aging. 2020;12(7):5832–57. https://doi.org/10.18632/aging.102979.
Lee YH, Song GG. Meta-analysis of differentially expressed genes in ankylosing spondylitis. Genet Mol Res GMR. 2015;14(2):5161–70. https://doi.org/10.4238/2015.May.18.6.
Yang L, Wang L, Wang X, Xian CJ, Lu H. A possible role of intestinal microbiota in the pathogenesis of ankylosing spondylitis. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122126.
Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, Ward M, Weisman M, Reveille JD, Wordsworth BP, Stone MA, Maksymowych WP, Rahman P, Gladman D, Inman RD, Brown MA. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6(12):e1001195. https://doi.org/10.1371/journal.pgen.1001195.
Vegvari A, Szabo Z, Szanto S, Nesterovitch AB, Mikecz K, Glant TT, Adarichev VA. Two major interacting chromosome loci control disease susceptibility in murine model of spondyloarthropathy. J Immunol (Baltimore, Md: 1950). 2005; 175(4):2475–2483. https://doi.org/10.4049/jimmunol.175.4.2475
Gaafar NAG, Aslani M, Aghazadeh Z, Mortazavi-Jahromi SS, Razavi A, Mirshafiey A. Effects of mannuronic acid (M2000) on gene expression profile of signal transducer and activator of transcription proteins (STATs) in rheumatoid arthritis patients. Reumatismo. 2020;72(2):93–102. https://doi.org/10.4081/reumatismo.2020.1235.
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med. 2020;52(8):1185–97. https://doi.org/10.1038/s12276-020-0445-6.
Zhang Y, Li X, Zhang J, Liang H. Natural killer T cell cytotoxic activity in cervical cancer is facilitated by the LINC00240/microRNA-124-3p/STAT3/MICA axis. Cancer Lett. 2020;474:63–73. https://doi.org/10.1016/j.canlet.2019.12.038.
Li J, Cao C, Xiang Y, Hong Z, He D, Zhong H, Liu Y, Wu Y, Zheng X, Yin H, Zhou J, Xie H, Huang X. TLT2 suppresses Th1 response by promoting IL-6 production in monocyte through JAK/STAT3 signal pathway in tuberculosis. Front Immunol. 2020;11:2031. https://doi.org/10.3389/fimmu.2020.02031.
Zhu F, Qiu T, Zhu S, Zhao K, Chen C, Qiao J, Pan B, Yan Z, Chen W, Liu Q, Wu Q, Cao J, Sang W, Zeng L, Sun H, Li Z, Xu K. TIRC7 inhibits Th1 cells by upregulating the expression of CTLA4 and STAT3 in mice with acute graftversushost disease. Oncol Rep. 2020;44(1):43–54. https://doi.org/10.3892/or.2020.7588.
Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K, Morita R. Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. Immun Inflamm Dis. 2021. https://doi.org/10.1002/iid3.485.
Li J, Yu TT, Yan HC, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. T cells participate in bone remodeling during the rapid palatal expansion. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34(11):15327–37. https://doi.org/10.1096/fj.202001078R.
Palmer AD, Slauch JM. Envelope stress and regulation of the salmonella pathogenicity Island 1 type III secretion system. J Bacteriol. 2020; 202(17). https://doi.org/10.1128/JB.00272-20
Nguyen VC, Ray D, Gross MS, de Tand MF, Frezal J, Moreau-Gachelin F. Localization of the human oncogene SPI1 on chromosome 11, region p11.22. Hum Genet. 1990; 84(6):542–546. https://doi.org/10.1007/BF00210807
Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Mol Microbiol. 2019;111(3):570–87. https://doi.org/10.1111/mmi.14174.
Lin D, Rao CV, Slauch JM. The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol. 2008;190(1):87–97. https://doi.org/10.1128/JB.01323-07.
Hegde S, Hankey P, Paulson RF. Self-renewal of leukemia stem cells in Friend virus-induced erythroleukemia requires proviral insertional activation of Spi1 and hedgehog signaling but not mutation of p53. Stem Cells. 2012;30(2):121–30. https://doi.org/10.1002/stem.781.
Kayali S, Giraud G, Morlé F, Guyot B. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia. PLoS ONE. 2012;7(10):e46799. https://doi.org/10.1371/journal.pone.0046799.
Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. Transcriptional regulation of frizzled-1 in human osteoblasts by Sp1. PLoS ONE. 2016;11(10):e0163277. https://doi.org/10.1371/journal.pone.0163277.
Xia CP, Pan T, Zhang N, Guo JR, Yang BW, Zhang D, Li J, Xu K, Meng Z, He H. Sp1 promotes dental pulp stem cell osteoblastic differentiation through regulating noggin. Mol Cell Probes. 2020;50:101504. https://doi.org/10.1016/j.mcp.2019.101504.
Zhang X, Li R, Qin X, Wang L, Xiao J, Song Y, Sheng X, Guo M, Ji X. Sp1 plays an important role in vascular calcification both in vivo and in vitro. J Am Heart Assoc. 2018;7(6). https://doi.org/10.1161/JAHA.117.007555
Jules J, Li YP, Chen W. C/EBPalpha and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis. Bone. 2018;107:104–14. https://doi.org/10.1016/j.bone.2017.05.009.
Izawa N, Kurotaki D, Nomura S, Fujita T, Omata Y, Yasui T, Hirose J, Matsumoto T, Saito T, Kadono Y, Okada H, Miyamoto T, Tamura T, Aburatani H, Tanaka S. Cooperation of PU.1 with IRF8 and NFATc1 defines chromatin landscapes during RANKL-induced osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2019; 34(6):1143–1154. https://doi.org/10.1002/jbmr.3689
Carey HA, Hildreth BE, 3rd, Samuvel DJ, Thies KA, Rosol TJ, Toribio RE, Charles JF, Ostrowski MC, Sharma SM. Eomes partners with PU.1 and MITF to regulate transcription factors critical for osteoclast differentiation. iScience.2019;11:238–245. https://doi.org/10.1016/j.isci.2018.12.018
Liu W, Di Q, Li K, Li J, Ma N, Huang Z, Chen J, Zhang S, Zhang W, Zhang Y. The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies. J Genet Genom. 2020; 47(9):535–546. https://doi.org/10.1016/j.jgg.2020.09.002
Yang PM, Lin PJ, Chen CC. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1. Epigenetics. 2012;7(4):390–9. https://doi.org/10.4161/epi.19373.
Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ, Kaplan MH. PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity. 2005; 22(6):693–703. https://doi.org/10.1016/j.immuni.2005.03.016
Yashiro T, Takeuchi H, Kasakura K, Nishiyama C. PU.1 regulates Ccr7 gene expression by binding to its promoter in naive CD4(+) T cells. FEBS Open Bio. 2020;10(6):1115–1121. https://doi.org/10.1002/2211-5463.12861
Chang HC, Han L, Jabeen R, Carotta S, Nutt SL, Kaplan MH. PU.1 regulates TCR expression by modulating GATA-3 activity. J Immunol (Baltimore, Md : 1950). 2009;183(8):4887–4894. https://doi.org/10.4049/jimmunol.0900363
Xu X, Gao X, Zhao X, Liao Y, Ji W, Li Q, Li J. PU.1-silenced dendritic cells induce mixed chimerism and alleviate intestinal transplant rejection in rats via a Th1 to Th2 shift. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2016;38 (1):220–228. https://doi.org/10.1159/000438623
Lu Y, Wang Q, Xue G, Bi E, Ma X, Wang A, Qian J, Dong C, Yi Q. Th9 cells represent a unique subset of CD4(+) T cells endowed with the ability to eradicate advanced tumors. Cancer Cell. 2018;33(6):1048–1060. https://doi.org/10.1016/j.ccell.2018.05.004