SPECTROSCOPY OF A GEMINID FIREBALL: ITS SIMILARITY TO COMETARY METEOROIDS AND THE NATURE OF ITS PARENT BODY

The moon - Tập 95 - Trang 375-387 - 2005
J. M. TRIGO-RODRíGUEZ1, J. LLORCA2,3, J. BOROVIČKA4, J. FABREGAT5
1Institute of Geophysics and Planetary Physics, University of California, Los Angeles (UCLA), USA
2Departament Química Inorgànica, Universitat de Barcelona, Barcelona, Spain
3Institut d’Estudis Espacials de Catalunya, Barcelona, Spain
4Astronomical Institute, Academy of Sciences, Ondrejov Observatory, Ondrejov, Czech Republic
5Observatori Astronòmic, Universitat de València, València, Spain

Tóm tắt

A detailed analysis of a photographic spectrum of a Geminid fireball obtained in December 14, 1961 at the Ondrejov Observatory is presented. We have computed a synthetic spectrum for the fireball and compared it with the observed spectrum assuming chemical equilibrium in the meteor head. In this way we have determined relative chemical abundances in meteor vapors. Comparing the relative chemical abundances of this Geminid meteoroid with those obtained from meteoroids associated with comets 55P/Tempel-Tuttle and 109P/Swift-Tuttle we found no significant chemical differences in main rock-forming elements. Despite of this similarity, the deepest penetration of the Geminid meteoroids and their ability to reach high rotation rates in space without fragmentation suggest that thermal processing is affecting their physical properties. We suggest that as consequence of space weathering a high-strength envelope is produced around these particles. In this picture, heating processes of the mineral phases could result in the peculiar properties observed during atmospheric entry of the Geminid meteoroids, especially their strength, which is evidenced by its resistance to ablation. Finally, although one meteoroid cannot be obviously considered as representative of the composition of its parent body, we conclude that 3200 Phaethon is able to produce millimetre-size debris nearly chondritic in composition, but the measured slight overabundance of Na would support a cometary origin for this body.

Tài liệu tham khảo

Alexander, C. M. O. D., Boss A. P., Carlson R. W. (2001) Science 293: 64–68 Alexander C.M.O.D., Love S.G. (2001). LPSC XXXII abstract # 1935. Lunar & Planetary Institute, Houston TX Beech M., Illingworth A., Murray I.S. (2003). Meteorit. Planet. Sci. 38:1045–1051 Belton, M. J. S., Spinrad, H., Wehinger, P. A., and Wycroff, S.: 1985. IAU Circ. 4029 Borovička J. (1993). A&A 279: 627–645 Borovička J. (1994a) Planet. Space Sci. 42: 145–150 Borovička J. (1994b) A&A Supl. Ser. 103: 83–96 Borovička J., Betlem H. (1997). Planet. Space Sci. 45: 563–575 Borovička J., Jenniskens P. (2000). Earth Moon Planets 82–83: 399–428 Borovička J., Stork R., Bocek J. (1999). Meteorit. Planet. Sci. 34: 987–994 Campins, H., McCarthy, D., Kern S., Weaver, H. A., and Brown R. H.: 1999, AAS DPS Meeting 31, abstract no. 3005 Ceplecha Z. (1961) Bull. Astr. Inst. Czech. 12: 246–250 Chamberlin A.B., McFadden L.A., Schulz R., Scheleider D.G., Bus S.J. (1996) Icarus 119: 173–181 Cochran A.L., Baker E.S. (1984). Icarus 59: 296–300 Dumas C., Owen T., Barucci M.A. (1998). Icarus 133: 221–232 Flynn G.J. (1989) Icarus 77: 287–310 Flynn G.J. (1991). In Asteroids, Comets, and Meteors, edited by A.W. Harris and E. Bowell Lunar and Planetary Institute, Houston, TX Green, S.: 1983, IAU Circ. 3878 Greenberg, J. M.: 1982, in L. L. Wilkening (ed.), Comets. Univ. Arizona Press, pp. 131–164. Gustafson B.A.S. (1989). A&A 225: 533 Halliday I. (1988). Icarus 76: 279–294 Howart, I. D., Murray, J., Mills, D., and Berry, D. S.: 1996, Rutherford Appleton Laboratory Publication Hudson R.L., Moore M.H. (2001), J. Geophys. Res. 106: 33381–33386 Hunt, J., Kox, K., and Williams, I. P.: 1985, in C.-I. Lagerkvist et al. (eds.), Asteroids, Comets, Meteors II, Uppsala University, pp. 549–553 Jenniskens P., Lacey M., Allan B.J., Self D.E., Plane J.M.C. (2000). Earth, Moon, Planets, 82–83: 429–438 Kurucz R.L. (1991). In: David Philip, Upgren and Janes L. (eds) Precision photometry: Astrophysics of the Galaxy. Davis Press, Schenectady, EUA Lodders K., Osborne R. (1999), Space Sci. Rev. 90: 289–297 McNeil W.J., Murad and Plane J.M.C. (2002) Models of meteoric metals in the atmosphere In: Murad E., Williams I.P. (eds) Meteors in the Earth’s Atmosphere. Cambridge University Press, Cambridge UK, pp. 265–287 Murad E. (2001). Meteoritics Planet. Sci. 36: 1217–1224 Rietmeijer F.J.M. (2002) Chemie der Erde 62–1: 1–45 Rietmeijer F.J.M., J.A. Nuth III J.A. (2000). Earth Moon Planets 82–83: 325–350 Stern S. A. (2003). Nature 424: 639–642 Thompson W.R., Murray B.G.J.P.T., Khare B.N., Sagan C. (1987), J. Geophys. Res. 92: 14933–14947 Trigo-Rodríguez J.M. (2002). Spectroscopic analysis of cometary and asteroidal fragments during their entry into the terrestrial atmosphere. PhD thesis (in Spanish), University of Valencia, Spain Trigo-Rodríguez, J. M. and Llorca, J.: 2004, Adv. Space Res. (submitted) Trigo-Rodríguez J.Ma, Llorca J., Borovička J., Fabregat J. (2003). Meteorit. Planet. Sci. 38: 1283–1294 Trigo-Rodríguez J.Ma, Llorca J., Fabregat J. (2004), M. Not. Royal Astron. Soc. 348: 802–810 Veeder, G. J., Kowal, C., and Matson, D. L.: 1984, Lunar and Planetary Science XV abstract 878–879 Whipple F.L. (1983). IAU Circular 3881: 1 Williams I.P., Wu Z. (1993) Mon. Not. R. Astr. Soc. 262: 231–248