SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells
Molecular Cancer - 2006
Tóm tắt
The structural maintenance of chromosome 3 (SMC3) protein is a constituent of a number of nuclear multimeric protein complexes that are involved in DNA recombination and repair in addition to chromosomal segregation. Overexpression of SMC3 activates a tumorigenic cascade through which mammalian cells acquire a transformed phenotype. This has led us to examine in depth how SMC3 level affects cell growth and genomic stability. In this paper the effect of SMC3 knockdown has been investigated. Mammalian cells that are SMC3 deficient fail to expand in a clonal population. In order to shed light on the underlying mechanism, experiments were conducted in zebrafish embryos in which cell competence to undergo apoptosis is acquired at specific stages of development and affects tissue morphogenesis. Zebrafish Smc3 is 95% identical to the human protein, is maternally contributed, and is expressed ubiquitously at all developmental stages. Antisense-mediated loss of Smc3 function leads to increased apoptosis in Smc3 expressing cells of the developing tail and notocord causing morphological malformations. The apoptosis and the ensuing phenotype can be suppressed by injection of a p53-specific MO that blocks the generation of endogenous p53 protein. Results in human cells constitutively lacking p53 or BAX, confirmed that a p53-dependent pathway mediates apoptosis in SMC3-deficient cells. A population of aneuploid cells accumulated in zebrafish embryos following Smc3-knockdown whereas in human cells the transient downregulation of SMC3 level lead to the generation of cells with amplified centrosome number. Smc3 is required for normal embryonic development. Its deficiency affects the morphogenesis of tissues with high mitotic index by triggering an apoptotic cascade involving p53 and the downstream p53 target gene bax. Cells with low SMC3 level display centrosome abnormalities that can lead to or are the consequence of dysfunctional mitosis and/or aneuploidy. Collectively the data support the view that SMC3 deficiency affects chromosomal stability leading to the activation of p53-dependent mitotic checkpoint.
Từ khóa
Tài liệu tham khảo
Strunnikov AV, Larionov VL, Koshland D: SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol. 1993, 123: 1635-1648. 10.1083/jcb.123.6.1635
Haering CH, Nasmyth K: Building and breaking bridges between sister chromatids. Bioessays. 2003, 25: 1178-1191. 10.1002/bies.10361
Hirano T: At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol. 2006, 7: 311-322. 10.1038/nrm1909
Jessberger R, Chui G, Linn S, Kemper B: Analysis of the mammalian recombination protein complex RC-1. Mutat Res. 1996, 350: 217-227.
Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 2002, 16: 571-582. 10.1101/gad.970702
Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB: Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 2004, 18: 1423-1438. 10.1101/gad.1200304
Seo GJ, Kim SE, Lee YM, Lee JW, Lee JR, Hahn MJ, Kim ST: Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun. 2003, 304: 339-343. 10.1016/S0006-291X(03)00589-8
Ghiselli G, Iozzo RV: Overexpression of bamacan/SMC3 causes transformation. J Biol Chem. 2000, 275: 20235-20238. 10.1074/jbc.C000213200
Ghiselli G, Coffee N, Munnery CE, Koratkar R, Siracusa LD: The cohesin SMC3 is a target the for beta-catenin/TCF4 transactivation pathway. J Biol Chem. 2003, 278: 20259-20267. 10.1074/jbc.M209511200
Ghiselli G, Liu CG: Global gene expression profiling of cells overexpressing SMC3. Mol Cancer. 2005, 4: 34- 10.1186/1476-4598-4-34
Michaelis C, Ciosk R, Nasmyth K: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997, 91: 35-45. 10.1016/S0092-8674(01)80007-6
Losada A, Yokochi T, Kobayashi R, Hirano T: Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol. 2000, 150: 405-416. 10.1083/jcb.150.3.405
Waizenegger IC, Hauf S, Meinke A, Peters JM: Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000, 103: 399-410. 10.1016/S0092-8674(00)00132-X
Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D, Iannaccone P: Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem. 2002, 277: 5548-5555. 10.1074/jbc.M105708200
Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, Garcia-Sastre A: Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A. 2002, 99: 10736-10741. 10.1073/pnas.112338099
Kury P, Abankwa D, Kruse F, Greiner-Petter R, Muller HW: Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. Eur J Neurosci. 2004, 19: 32-42. 10.1111/j.1460-9568.2004.03112.x
Mito Y, Sugimoto A, Yamamoto M: Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol Biol Cell. 2003, 14: 2399-2409. 10.1091/mbc.E02-09-0603
Nasmyth K: Segregating sister genomes: the molecular biology of chromosome separation. Science. 2002, 297: 559-565. 10.1126/science.1074757
Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B, Lengauer C: Securin is required for chromosomal stability in human cells. Cell. 2001, 105: 445-457. 10.1016/S0092-8674(01)00340-3
Kumada K, Yao R, Kawaguchi T, Karasawa M, Hoshikawa K, Sugitani Y, Imoto I, Inazawa J, Sugawara M, Yanagida M, Noda T: The selective continued linkage of centromeres from mitosis to interphase in the absence of mammalian separase. J Cell Biol. 2006, 172: 835-846. 10.1083/jcb.200511126
Patel CA, Ghiselli G: Hinderin, a five-domains protein including coiled-coil motifs that binds to SMC3. BMC Cell Biol. 2005, 6: 3- 10.1186/1471-2121-6-3
Langheinrich U, Hennen E, Stott G, Vacun G: Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol. 2002, 12: 2023-2028. 10.1016/S0960-9822(02)01319-2
Dooley K, Zon LI: Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000, 10: 252-256. 10.1016/S0959-437X(00)00074-5
Ikegami R, Hunter P, Yager TD: Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol. 1999, 209: 409-433. 10.1006/dbio.1999.9243
Ikegami R, Rivera-Bennetts AK, Brooker DL, Yager TD: Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. Zygote. 1997, 5: 153-175.
Cole LK, Ross LS: Apoptosis in the developing zebrafish embryo. Dev Biol. 2001, 240: 123-142. 10.1006/dbio.2001.0432
Beasley M, Xu H, Warren W, McKay M: Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function. Genome Res. 2002, 12: 1201-1209. 10.1101/gr107302
Nasevicius A, Ekker SC: Effective targeted gene 'knockdown' in zebrafish. Nat Genet. 2000, 26: 216-220. 10.1038/79951
Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS, Chanda SK, Izpisua-Belmonte JC, Schultz PG: Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci U S A. 2004, 101: 3456-3461. 10.1073/pnas.0308562100
Liu TX, Howlett NG, Deng M, Langenau DM, Hsu K, Rhodes J, Kanki JP, D'Andrea AD, Look AT: Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell. 2003, 5: 903-914. 10.1016/S1534-5807(03)00339-3
Plaster N, Sonntag C, Busse CE, Hammerschmidt M: p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase delta1. Cell Death Differ. 2005.
Ikegami R, Zhang J, Rivera-Bennetts AK, Yager TD: Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo, by treatment with the spindle-destabilising agent nocodazole. Zygote. 1997, 5: 329-350.
Kane DP, Kimmel CB: The zebrafish midblastula transition. Development. 1993, 119: 447-456.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203: 253-310.
Fukasawa K: Centrosome amplification, chromosome instability and cancer development. Cancer Letters. 2005, 230: 6-19. 10.1016/j.canlet.2004.12.028
Piel M, Nordberg J, Euteneuer U, Bornens M: Centrosome-dependent exit of cytokinesis in animal cells. Science. 2001, 291: 1550-1553. 10.1126/science.1057330
Stern HM, Zon LI: Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer. 2003, 3: 533-539. 10.1038/nrc1126
Zamir E, Kam Z, Yarden A: Transcription-dependent induction of G1 phase during the zebra fish midblastula transition. Mol Cell Biol. 1997, 17: 529-536.
Shepard JL, Amatruda JF, Stern HM, Subramanian A, Finkelstein D, Ziai J, Finley KR, Pfaff KL, Hersey C, Zhou Y, Barut B, Freedman M, Lee C, Spitsbergen J, Neuberg D, Weber G, Golub TR, Glickman JN, Kutok JL, Aster JC, Zon LI: A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A. 2005, 102: 13194-13199. 10.1073/pnas.0506583102
Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R: MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature. 2001, 409: 355-359. 10.1038/35053094
Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL: Centrosome hypertrophy in human breast tumors: implication for genomic stability and cell polarity. Proc Natl Acad Sci U S A. 1998, 95: 2950-2955. 10.1073/pnas.95.6.2950
Brinkley BR: Managing the centrosome number game: from chaos to stability in cancer cell division. Trends Cell Biol. 2001, 11: 18-21. 10.1016/S0962-8924(00)01872-9
Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ: Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998, 58: 3974-3985.
Sato N, Mizumoto M, Nakamura M, Tanaka M: Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res. 2000, 255: 321-326. 10.1006/excr.1999.4797
Sato N, Mizumoto K, Nakamura M, Maehara N, Minamishima YA, Nishio S, Nagai E, Tanaka M: Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet. 2001, 126: 13-19. 10.1016/S0165-4608(00)00384-8
Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, Friess H, Sen S: Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003, 9: 991-997.
Fuchs E, Cleveland DW: A structural scaffolding of intermediate filaments in health and disease. Science. 1998, 279: 514-519. 10.1126/science.279.5350.514
Schliwa M, Euteneuer U, Graf R, Ueda M: Centrosomes, microtubules and cell migration. Biochem Soc Symp. 1999, 65: 223-231.
Griffin CS, Simpson PJ, Wilson CR, Thacker J: Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol. 2000, 2: 757-761. 10.1038/35036399
Shimizu K, Shirataki H, Honda T, Minami S, Takai Y: Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J Biol Chem. 1998, 273: 6591-6594. 10.1074/jbc.273.12.6591
Westerfield M: The zebrafish book. 1995, Eugene, OR, University of Oregon.
Ghiselli G, Farber SA: D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC Dev Biol. 2005, 5: 19- 10.1186/1471-213X-5-19