SIRT1 pathway in Parkinson’s disease: a faraway snapshot but so close
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abo-Sleiman PM, Muqit MMK, Nicholas W (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7(3):207–219
Alam F, Syed H, Amjad S, Baig M, Khan TA, Rehman R (2021) Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Curr Res Physiol 1(4):119–124
Al-Kuraishy HM, Hamada MT, Al-Samerraie AY (2016) Effects of metformin on omentin levels in a newly diagnosed type II diabetes mellitus: randomized, placebo controlled study. Mustansiriya Med J 15:49–55
Al-Kuraishy HM, Al-Gareeb AI, Waheed HJ, Al-Maiahy TJ (2018) Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: concepts and clinical practice. J Adv Pharm Technol Res 9(3):80
Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Cruz-Martins N, Batiha GE (2021) COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type ii diabetes mellitus: the anti-inflammatory role of metformin. Front Med 110:644295
Al-Kuraishy HM, Al-Gareeb AI, Batiha GE (2022) The possible role of ursolic acid in Covid-19: a real game changer. Clin Nutr ESPEN 1(47):414–417
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GE (2022) Nitazoxanide and COVID-19: a review. Mol Biol Rep 12:1–8
Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, Albogami SM, Batiha GE (2022) Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res 27(1):1–1
Al-Kuraishy HM, Al-Gareeb AI, Fageyinbo MS, Batiha GE (2022) Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci OA Mar:FSO797
Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GE (2022) Dipyridamole and adenosinergic pathway in Covid-19: a juice or holy grail. Egypt J Med Human Genet 23(1):1–6
Alomair BM, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, De Waard M, Elekhnawy E, Batiha GE (2022) Is sitagliptin effective for SARS-CoV-2 infection: false or true prophecy? Inflammopharmacology 30:1–5
Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560
Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468
Batiha GE, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-Kuraishy HM (2022) Common NLRP3 inflammasome inhibitors and Covid-19: divide and conquer. Sci Afr 22:e01407
Batiha GE, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM (2022) Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 16:1–9
Bayliss JA, Lemus MB, Santos VV, Deo M, Davies JS, Kemp BE, Elsworth JD, Andrews ZB (2016) Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons. PLoS ONE 11(7):e0159381
Blandini F, Cosentino M, Mangiagalli A, Marino F, Samuele A, Rasini E, Fancellu R, Tassorelli C, Pacchetti C, Martignoni E, Riboldazzi G (2004) Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson’s disease. The effect of dopaminergic treatment. J Neural Transm 111(8):1017–1030
Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson’s disease. Lancet Neurol 19(2):170–178
Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, Rossi G, Eleuteri AM (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000
Bouchez C, Devin A (2019) Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cells 8(4):287
Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E (2019) Plasma alpha-synuclein levels in patients with Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 40:929–938
Boxberger N, Hecker M, Zettl UK (2019) Dysregulation of inflammasome priming and activation by MicroRNAs in human immune-mediated diseases. J Immunol 202:2177–2187
Brakedal B, Flønes I, Reiter SF, Torkildsen Ø, Dölle C, Assmus J, Haugarvoll K, Tzoulis C (2017) Glitazone use associated with reduced risk of Parkinson’s disease. Mov Disord 32:1594–1599
Buddhala C, Campbell MC, Perlmutter JS, Kotzbauer PT (2015) Correlation between decreased CSF α-synuclein and Aβ1–42 in Parkinson disease. Neurobiol Aging 36(1):476–484
Calopa M, Bas J, Callén A, Mestre M (2010) Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis 38(1):1–7
Cantó C, Auwerx J (2009) Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 20(7):325–331
Cao K, Capell BC, Erdos MR, Djabali K, Collins FS (2007) A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci 104(12):4949–4954
Cao Y, Yan Z, Zhou T, Wang G (2017) SIRT1 regulates cognitive performance and ability of learning and memory in diabetic and nondiabetic models. J Diabetes Res 15:2017
Cao Y, Liu C, Li G, Gao W, Tang H, Fan S, Tang X, Zhao L, Wang H, Peng A, You C (2022) Metformin alleviates delayed hydrocephalus after intraventricular hemorrhage by inhibiting inflammation and fibrosis. Transl Stroke Res 19:1–9
Carapellotti AM, Stevenson R, Doumas M (2020) The efficacy of dance for improving motor impairments, non-motor symptoms, and quality of life in Parkinson’s disease: a systematic review and meta-analysis. PLoS ONE 15(8):e0236820
Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC, Hsieh PL, Tsai KL (2018) Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling. Redox Biol 1(14):116–125
Chen F, Dong RR, Zhong KL et al (2016) Antidiabetic drugs restore abnormal transport of amyloid-beta across the blood-brain barrier and memory impairment in db/db mice. Neuropharmacology 101:123–136
Chen B, Wen X, Jiang H, Wang J, Song N, Xie J (2019) Interactions between iron and α-synuclein pathology in Parkinson’s disease. Free Radical Biol Med 1(141):253–260
Chen X, Mai H, Chen X, Cai Y, Cheng Q, Chen X, Li X, Fan W, Tang P, Ou M, Yang J (2019) Rs2015 polymorphism in miRNA target site of sirtuin2 gene is associated with the risk of Parkinson’s disease in chinese han population. Biomed Res Int 12:2019
Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 1(187):111215
Chen Y, Jiang Y, Yang Y, Huang X, Sun C (2021) SIRT1 protects dopaminergic neurons in parkinson’s disease models via PGC-1α-mediated mitochondrial biogenesis. Neurotox Res 39(5):1393–1404
Chen N, Wang XC, Fan LL, Zhu YH, Wang Q, Chen YB (2022) Berberine ameliorates lipopolysaccharide-induced cognitive impairment through SIRT1/NRF2/NF-κB signaling pathway in C57BL/6J Mice. Rejuvenation Res 25(5):233–242
Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD, Lo I, Minami S, Devidze N (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J Neurosci 35(2):807
Church FC (2021) Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules 11(4):612
Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L et al (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8:e55375
Collier TJ, Kanaan NM, Kordower JH (2017) Aging and Parkinson’s disease: different sides of the same coin? Mov Disord 32(7):983–990
Cuyàs E, Verdura S, Llorach-Parés L, Fernández-Arroyo S, Joven J, Martin-Castillo B, Bosch-Barrera J, Brunet J, Nonell-Canals A, Sanchez-Martinez M, Menendez JA (2018) Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation. Front Endocrinol 6(9):657
Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP, Perni RB, Riera TV, Szczepankiewicz B, Vlasuk GP, Stein RL (2010) SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 285(43):32695–32703
Di M, Zhang Q, Wang J, Xiao X, Huang J, Ma Y, Yang H, Li M (2022) Epigallocatechin-3-gallate (EGCG) attenuates inflammatory responses and oxidative stress in lipopolysaccharide (LPS)-induced endometritis via silent information regulator transcript-1 (SIRT1)/nucleotide oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3) pathway. J Biochem Mol Toxicol 3:e23203
Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, Chuturgoon AA (2020) The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 15(875):173059
Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S (2021) Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 54(1):4101–4123
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 32(1):124–132
Dos Santos MG, Schimith LE, André-Miral C, Muccillo-Baisch AL, Arbo BD, Hort MA (2022) Neuroprotective effects of resveratrol in in vivo and in vitro experimental models of parkinson’s disease: a systematic review. Neurotox Res 11:1–27
Durcan R, Wiblin L, Lawson RA, Khoo TK, Yarnall AJ, Duncan GW, Brooks DJ, Pavese N, Burn DJ (2019) Prevalence and duration of non-motor symptoms in prodromal Parkinson’s disease. Eur J Neurol 26(7):979–985
Engel GL, Marella S, Kaun KR, Wu J, Adhikari P, Kong EC, Wolf FW (2016) Sir2/Sirt1 links acute inebriation to presynaptic changes and the development of alcohol tolerance, preference, and reward. J Neurosci 36(19):5241–5251
Erekat NS (2018) Apoptosis and its role in Parkinson’s Disease, vol 21. Exon Publications, Brisbane, pp 65–82
Fan Z, Pan YT, Zhang ZY, Yang H, Yu SY, Zheng Y, Ma JH, Wang XM (2020) Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J Neuroinflammation 17(1):1
Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS (2011) Transcriptional factor NF-κB as a target for therapy in Parkinson’s disease. Parkinson’s Dis 2011:216298
Gaki GS, Papavassiliou AG (2014) Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. NeuroMol Med 16(2):217–230
Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49
Ghiasi R, Naderi R, Sheervalilou R, Alipour MR (2019) Swimming training by affecting the pancreatic Sirtuin1 (SIRT1) and oxidative stress, improves insulin sensitivity in diabetic male rats. Horm Mol Biol Clin Investig 40(3):10
Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci 104(47):18754–18759
Ghosh S, Liu B, Zhou Z (2013) Resveratrol activates SIRT1 in a Lamin A-dependent manner. Cell Cycle 12(6):872–876
Guerreiro S, Privat AL, Bressac L, Toulorge D (2020) CD38 in neurodegeneration and neuroinflammation. Cells 9(2):471
Guo Y, Xu A, Wang Y (2016) SIRT1 in endothelial cells as a novel target for the prevention of early vascular aging. J Cardiovasc Pharmacol 67(6):465–473
Guo YJ, Dong SY, Cui XX, Feng Y, Liu T, Yin M et al (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60:2161–2175
Hattori Y, Okamoto Y, Maki T, Yamamoto Y, Oishi N, Yamahara K, Nagatsuka K, Takahashi R, Kalaria RN, Fukuyama H, Kinoshita M, Ihara M (2014) Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase. Stroke 45:3403–3411
He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021
Hemmati-Dinarvand M, Valilo M, Kalantary-Charvadeh A, Sani MA, Kargar R, Safari H, Samadi N (2019) Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 14(709):134296
Herath PM, Cherbuin N, Eramudugolla R, Anstey KJ (2016) The effect of diabetes medication on cognitive function: evidence from the PATH through life study. Biomed Res Int 2016:7208429
Hirsch EC, Standaert DG (2021) Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov Disord 36(1):16–24
Hollville E, Romero SE, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J 286(17):3276–3298
Hu X, Lu Z, Yu S, Reilly J, Liu F, Jia D, Qin Y, Han S, Liu X, Qu Z, Lv Y (2019) CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. Autophagy 15(3):453–465
Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35(3):146–154
Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci 94(14):7531–7536
Hussain F, Kayani HU (2020) Aging-Oxidative stress, antioxidants and computational modeling. Heliyon 6(5):e04107
Imfeld P, Bodmer M, Jick SS, Meier CR (2012) Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 60(5):916–921
Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, Bai X, Wang K, Liu Y, Li X, Guan H (2018) SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophysica Acta (BBA) Mol Basis Dis 1864(3):784–792
Jiang P, Dickson DW (2018) Parkinson’s disease: experimental models and reality. Acta Neuropathol 135:13–32
Jiao F, Gong Z (2020) The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxidative Medicine and Cellular Longevity. 2020:6782872
Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S (2020) Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol 15(341):577164
Kalia LV (2018) Biomarkers for cognitive dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 1(46):S19-23
Kang ES, Kim HJ, Han SG, Seo HG (2020) Duck oil-loaded nanoemulsion inhibits senescence of angiotensin II-treated vascular smooth muscle cells by upregulating SIRT1. Food Sc Anim Resour 40(1):106
Kang S, Li J, Yao Z, Liu J (2021) Cannabidiol induces autophagy to protects neural cells from mitochondrial dysfunction by upregulating SIRT1 to inhibits NF-κB and NOTCH pathways. Front Cell Neurosci 30(15):654340
Khanahmadi M, Manafi B, Tayebinia H, Karimi J, Khodadadi I (2020) Downregulation of Sirt1 is correlated to upregulation of p53 and increased apoptosis in epicardial adipose tissue of patients with coronary artery disease. EXCLI J 19:1387
Kim C, Spencer B, Rockenstein E, Yamakado H, Mante M, Adame A, Fields JA, Masliah D, Iba M, Lee HJ, Rissman RA (2018) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13(1):1–8
Köbe T, Witte AV, Schnelle A, Tesky VA, Pantel J, Schuchardt JP, Hahn A, Bohlken J, Grittner U, Flöel A (2017) Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Front Neurosci 7(11):105
Kouli A, Camacho M, Allinson K, Williams-Gray CH (2020) Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol Commun 8(1):1–9
Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E (2018) Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 1(106):443–453
Kwon J, Lee S, Kim YN, Lee IH (2019) Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp Mol Med 51(3):1–9
Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, Rascol O, Giladi N, Stocchi F, Tanner CM, Postuma RB (2022) Trial of cinpanemab in early Parkinson’s disease. N Engl J Med 387(5):408–420
Le K, Daliv EC, Wu S, Qian F, Ali AI, Yu D, Guo Y (2019) SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: a possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 1(75):105779
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J (2019) Dysfunction of cellular proteostasis in Parkinson’s disease. Front Neurosci 10(13):457
Li K, Liu TX, Li JF, Ma YR, Liu ML, Wang YQ, Wu R, Li B, Shi LZ, Chen C (2019) rhEPO inhibited cell apoptosis to alleviate acute kidney injury in sepsis by AMPK/SIRT1 activated autophagy. Biochem Biophys Res Commun 517(4):557–565
Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, Li L, Dai H (2020) SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 1(170):10–20
Liao W, Xu J, Li B, Ruan Y, Li T, Liu J (2021) Deciphering the roles of metformin in Alzheimer’s disease: a snapshot. Front Pharmacol 12:728315
Liu J, Liu W, Yang H (2018) Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci 10(2):792–802
Liu J, Jiang J, Qiu J, Wang L, Zhuo J, Wang B, Sun D, Yu S, Lou H (2022) Urolithin A protects dopaminergic neurons in experimental models of Parkinson’s disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food Funct 13(1):375–385
Lu H, Wang B (2017) SIRT1 exerts neuroprotective effects by attenuating cerebral ischemia/reperfusion-induced injury via targeting p53/microRNA-22. Int J Mol Med 39(1):208–216
Ma Q, Zhang L, Pearce WJ (2019) MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 317(1):C3-19
Ma X, Sun Z, Han X, Li S, Jiang X, Chen S, Zhang J, Lu H (2020) Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a rat model of combined diabetes and Alzheimer’s disease. Front Neurosci 21(13):1400
Masi S, Uliana M, Virdis A (2019) Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascul Pharmacol 1(115):13–17
Maszlag-Török R, Boros FA, Vécsei L, Klivényi P (2021) Gene variants and expression changes of SIRT1 and SIRT6 in peripheral blood are associated with Parkinson’s disease. Sci Rep 11(1):1
Maynard S, Hall A, Galanos P, Rizza S, Yamamoto T, Gram HH, Munk SH, Shoaib M, Sørensen CS, Bohr VA, Lerdrup M (2022) Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. Nucleic Acids Res 50(17):9948–9965
Mohamad KA, El-Naga RN, Wahdan SA (2022) Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson’s disease: impact of the SIRT1-AMPK signaling pathway. Toxicol Appl Pharmacol 15(435):115853
Moore EM, Mander AG, Ames D et al (2013a) AIBL Investigators Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36(10):2981–2987
Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Brodaty H, Woodward M, Boundy K, Ellis KA, Bush AI et al (2013b) Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36:2981–2987
Nadwa EH, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Albogami SM, Alorabi M, Batiha GE, De Waard M (2022) Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. Naunyn Schmiedebergs Arch Pharmacol 3:1–6
Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, Wada T, Sasaoka T, Yamamoto S, Sasahara M, Imura J (2020) Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle 11(1):241–258
Norcliffe-Kaufmann L (2019) The vagus and glossopharyngeal nerves in two autonomic disorders. J Clin Neurophysiol 36(6):443–451
Obrador E, Salvador-Palmer R, López-Blanch R, Jihad-Jebbar A, Vallés SL, Estrela JM (2021) The link between oxidative stress, redox status, bioenergetics and mitochondria in the pathophysiology of ALS. Int J Mol Sci 22(12):6352
Ogawa K, Yagi T, Guo T, Takeda K, Ohguchi H, Koyama H, Aotani D, Imaeda K, Kataoka H, Tanaka T (2020) Pemafibrate, a selective PPARα modulator, and fenofibrate suppress microglial activation through distinct PPARα and SIRT1-dependent pathways. Biochem Biophys Res Commun 524(2):385–391
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK (2021) An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 18(5):1141–1160
Pallas M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M et al (2008) Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154:1388–1397
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL (2021) NRF2 activation and downstream effects: focus on Parkinson’s disease and brain angiotensin. Antioxidants 10(11):1649
Park R, Kook SY, Park JC, Mook-Jung I (2014) Aβ1–42 reduces P-glycoprotein in the blood–brain barrier through RAGE–NF-κB signaling. Cell Death Dis 5(6):e1299
Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 26(277):747–754
Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I (2020) Emerging neuroprotective effect of metformin in Parkinson’s disease: a molecular crosstalk. Pharmacol Res 1(152):104593
Peng X, Wang J, Peng J, Jiang H, Le K (2022) Resveratrol improves synaptic plasticity in hypoxic-ischemic brain injury in neonatal mice via alleviating SIRT1/NF-κB signaling-mediated neuroinflammation. J Mol Neurosci 72(1):113–125
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690 (Epub 2012/05/09. pmid:22560220; PubMed Central PMCID: PMCPmc3545644)
Qazi TJ, Lu J, Duru L, Zhao J, Qing H (2021) Upregulation of mir-132 induces dopaminergic neuronal death via activating SIRT1/P53 pathway. Neurosci Lett 1(740):135465
Qi J, Wang F, Yang P, Wang X, Xu R, Chen J, Yuan Y, Lu Z, Duan J (2018) Mitochondrial fission is required for angiotensin II-induced cardiomyocyte apoptosis mediated by a Sirt1-p53 signaling pathway. Front Pharmacol 9(9):176
Qian Y, Chen C, Ma L, Wang Z, Wang LF, Zuo L, Yang Y, Huang X, Jiang M, Wang X, Shi H (2018) CD38 deficiency promotes inflammatory response through activating Sirt1/NF-κB-mediated inhibition of TLR2 expression in macrophages. Mediators Inflamm 27:2018
Qiao C, Zhang Q, Jiang Q, Zhang T, Chen M, Fan Y et al (2018) Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson’s disease. J Neuroinflammation 15:193
Qin X, Zhang X, Li P, Wang M, Yan L, Bao Z, Liu Q (2021) Association between diabetes medications and the risk of parkinson’s disease: a systematic review and meta-analysis. Front Neurol 12:1155
Quiñones M, Martínez-Grobas E, Fernø J, Pérez-Lois R, Seoane LM, Al MO (2021) Hypothalamic actions of SIRT1 and SIRT6 on energy balance. Int J Mol Sci 22(3):1430
Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q (2020) Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease. Mol Cell Endocrinol 500:110628
Rhee SY, Han KD, Kwon H, Park SE, Park YG, Kim YH, Yoo SJ, Rhee EJ, Lee WY (2020) Association between glycemic status and the risk of parkinson disease: a nationwide population-based study. Diabetes Care 43:2169–2175
Rodriguez L, Marano MM, Tandon A (2018) Import and export of misfolded alpha-synuclein. Front Neurosci 12:344
Sahoo S, Padhy AA, Kumari V, Mishra P (2022) Role of ubiquitin-proteasome and autophagy-lysosome pathways in α-synuclein aggregate clearance. Mol Neurobiol 59(9):5379–5407
Sarge KD, Park-Sarge OK (2009) Sumoylation and human disease pathogenesis. Trends Biochem Sci 34(4):200–205
Sasaki T, Kitamura T (2010) Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr J 57:1010270499
Shaikh SB, Prabhu A, Bhandary YP (2019) Targeting anti-aging protein sirtuin (Sirt) in the diagnosis of idiopathic pulmonary fibrosis. J Cell Biochem 120(5):6878–6885
Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Kim HM, Leverenz JB (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69(3):570–580
Shi Q, Liu S, Fonseca V, Shi L. (2016) The effect of metformin exposure on neurodegenerative disease among elder adult veterans with diabetes mellitus. Abstract presented at: Proceedings of the American Diabetes Association 76th Scientific Sessions; June 10–14, New Orleans, LA
Shi Q, Liu S, Fonseca VA, Thethi TK, Shi L (2019) Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open 9:e024954
Shukla S, Sharma A, Pandey VK, Raisuddin S, Kakkar P (2016) Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells. Toxicol Appl Pharmacol 15(291):70–83
Singh P, Hanson PS, Morris CM (2017) SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci 18:46
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39(5):1851–1891
Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Singh SP (2020) NF-κB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotox Res 37(3):491–507
Trist BG, Hare DJ, Double KL (2019) Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 18(6):e13031
Ubaid S, Pandey S, Akhtar MS, Rumman M, Singh B, Mahdi AA (2022) SIRT1 mediates neuroprotective and neurorescue effects of camel α-lactalbumin and oleic acid complex on rotenone-induced Parkinson’s disease. ACS Chem Neurosci 13(8):1263–1272
Van der Perren A, Cabezudo D, Gelders G, Peralta Ramos JM, Van den Haute C, Baekelandt V, Lobbestael E (2021) LRRK2 ablation attenuates αlpha-synuclein–induced neuroinflammation without affecting neurodegeneration or neuropathology in vivo. Neurotherapeutics 18(2):949–961
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ (2018) SIRT1 activation: a potential strategy for harnessing endogenous protection against delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 65:1–5
Venna VR, Li J, Hammond MD, Mancini NS, McCullough LD (2014) Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. Eur J Neurosci 39(12):2129–2138
Wahab F, Rodriguez Polo I, Behr R (2021) SIRT1 expression and regulation in the primate testis. Int J Mol Sci 22(6):3207
Wahlqvist ML, Lee M-S, Hsu C-C, Chuang S-Y, Lee J-T, Tsai H-N (2012) Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 18:753–758
Wan B, Huang L, Jing C, Li Y, Jiao N, Liang M, Jiang S, Yang W (2022) Zearalenone promotes follicle development through activating the SIRT1/PGC-1α signaling pathway in the ovaries of weaned gilts. J Anim Sci 100(4):skac058
Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim Et Biophys Acta (BBA) Proteins Proteom 1804(8):1690–1694
Wang S, Yuan YH, Chen NH, Wang HB (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 1(67):458–464
Wang XL, Feng ST, Wang ZZ, Yuan YH, Chen NH, Zhang Y (2021) Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control in Parkinson’s disease. Cell Mol Neurobiol 41(7):1395–1411
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H (2022) Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med 11:1–7
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C (2022) CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 1(177):106133
Xiang-Sheng Z et al (2021) Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1-dependent pathway. Br J Pharmacol 178(18):3648–3666
Xu J, Wang C, Meng F, Xu P (2021) Long non-coding RNA H19 inhibition ameliorates oxygen-glucose deprivation-induced cell apoptosis and inflammatory cytokine expression by regulating the microRNA-29b/SIRT1/PGC-1α axis. Mol Med Rep 23(2):1
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G (2014) Inflammatory response in Parkinson’s disease. Mol Med Rep 10(5):2223–2233
Yanagisawa S, Baker JR, Vuppusetty C, Koga T, Colley T, Fenwick P, Donnelly LE, Barnes PJ, Ito K (2018) The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS ONE 13(3):e0193921
Yang C, Mo Y, Xu E, Wen H, Wei R, Li S, Zheng J, Li W, Le B, Chen Y, Pan H (2019) Astragaloside IV ameliorates motor deficits and dopaminergic neuron degeneration via inhibiting neuroinflammation and oxidative stress in a Parkinson’s disease mouse model. Int Immunopharmacol 1(75):105651
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, Ray Dorsey E, Dahodwala N, Cintina I, Hogan P, Thompson T (2020) Current and projected future economic burden of Parkinson’s disease in the US. Npj Parkinson’s Dis 6(1):1–9
Yang Y, Zhang S, Guan J, Jiang Y, Zhang J, Luo L, Sun C (2022) SIRT1 attenuates neuroinflammation by deacetylating HSPA4 in a mouse model of Parkinson’s disease. Biochim Et Biophys Acta (BBA)-Mol Basis Dis 1868(5):166365
Ye F, Wu A (2021) The protective mechanism of SIRT1 in the regulation of mitochondrial biogenesis and mitochondrial autophagy in Alzheimer’s disease. J Alzheimers Dis 82(1):149–157
Yu X, Zhang S, Zhao D, Zhang X, Xia C, Wang T, Zhang M, Liu T, Huang W, Wu B (2019) SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494. Int J Mol Med 43(4):1758–1768
Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 422(4):693–696
Zhang Q, Zhang P, Qi GJ, Zhang Z, He F, Lv ZX, Peng X, Cai HW, Li TX, Wang XM (2018) Tian B (2018) Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson’s disease models. Biochim Et Biophys Acta (BBA) Gen Subj 1862:1443–1451
Zhang JF, Zhang YL, Wu YC (2018) The role of Sirt1 in ischemic stroke: pathogenesis and therapeutic strategies. Front Neurosci 21(12):833
Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK (2020) Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur J Pharmacol 15(867):172847
Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH (2021) Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 178(5):1114–1132
Zhang J, Gao Y, Zhang L, Zhang C, Zhao Y, Zhang Y, Li S, Chang C, Zhang X, Yang G (2022) Alpha-lipoic acid attenuates MPTP/MPP+-induced neurotoxicity: roles of SIRT1-dependent PGC-1α signaling pathways. Neurotox Res 40(2):410–419
Zhou J, Yang Z, Shen R, Zhong W, Zheng H, Chen Z, Tang J, Zhu J (2021) Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci 22(8):620683