SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network
Tài liệu tham khảo
Deistung, 2017, Overview of quantitative susceptibility mapping: overview of Quantitative Susceptibility Mapping, NMR Biomed, 30, e3569, 10.1002/nbm.3569
Schweser, 2015, Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM), Z Für Med Phys
Wharton, 2015, Effects of white matter microstructure on phase and susceptibility maps, Magn Reson Med, 73, 1258, 10.1002/mrm.25189
Ropele, 2016, Iron quantification with susceptibility: iron quantification with susceptibility, NMR Biomed
Buch, 2015, Susceptibility mapping of air, bone, and calcium in the head, Magn Reson Med, 73, 2185, 10.1002/mrm.25350
Acosta-Cabronero, 2016, In Vivo MRI mapping of brain iron deposition across the adult lifespan, J Neurosci, 36, 364, 10.1523/JNEUROSCI.1907-15.2016
van Bergen, 2015, Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease, Am J Neuroradiol
Barkhof, 2018, Mapping deep gray matter iron in multiple sclerosis by using quantitative magnetic susceptibility, Radiology, 181274
Acosta-Cabronero, 2013, In Vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's disease, PLoS ONE, 8, e81093, 10.1371/journal.pone.0081093
Langkammer, 2016, Quantitative Susceptibility Mapping in Parkinson's disease, PLOS ONE, 11, e0162460, 10.1371/journal.pone.0162460
Liu, 2012, Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping, Radiology, 262, 269, 10.1148/radiol.11110251
Schweser, 2010, Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping, Med Phys, 37, 5165, 10.1118/1.3481505
Reichenbach, 1997, Theory and application of static field inhomogeneity effects in gradient-echo imaging, J Magn Reson Imaging, 7, 266, 10.1002/jmri.1880070203
Langkammer, 2015, Fast quantitative susceptibility mapping using 3D EPI and total generalized variation, NeuroImage, 111, 622, 10.1016/j.neuroimage.2015.02.041
Sun, 2015, Quantitative susceptibility mapping using single-shot echo-planar imaging, Magn Reson Med, 73, 1932, 10.1002/mrm.25316
Schweser, 2011, Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?, NeuroImage, 54, 2789, 10.1016/j.neuroimage.2010.10.070
Schweser, 2016, An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest, NMR Biomed
Li, 2001, High-precision mapping of the magnetic field utilizing the harmonic function mean value property, J Magn Reson San Diego Calif 1997, 148, 442
Li, 2011, Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition, NeuroImage, 55, 1645, 10.1016/j.neuroimage.2010.11.088
Özbay, 2016, A comprehensive numerical analysis of background phase correction with V-SHARP, NMR Biomed
Zhou, 2014, Background field removal by solving the Laplacian boundary value problem: background field removal by solving laplacian boundary value problem, NMR Biomed, 27, 312, 10.1002/nbm.3064
Sun, 2014, Background field removal using spherical mean value filtering and Tikhonov regularization, Magn Reson Med, 71, 1151, 10.1002/mrm.24765
de Rochefort, 2010, Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging, Magn Reson Med, 63, 194, 10.1002/mrm.22187
Liu, 2011, A novel background field removal method for MRI using projection onto dipole fields (PDF), NMR Biomed, 24, 1129, 10.1002/nbm.1670
Wu, 2012, Whole brain susceptibility mapping using compressed sensing, Magn Reson Med, 67, 137, 10.1002/mrm.23000
Topfer, 2015, SHARP edges: recovering cortical phase contrast through harmonic extension, Magn Reson Med, 73, 851, 10.1002/mrm.25148
Rasmussen, 2018, DeepQSM – using deep learning to solve the dipole inversion for MRI susceptibility mapping, BioRxiv, 278036
Yoon, 2018, Quantitative susceptibility mapping using deep neural network: QSMnet, NeuroImage, 179, 199, 10.1016/j.neuroimage.2018.06.030
Liu, 2012, Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map, NeuroImage, 59, 2560, 10.1016/j.neuroimage.2011.08.082
Ronneberger, 2015, U-Net: convolutional networks for biomedical image segmentation, 234
Kingma, 2014
Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929
Jacobsen, 2018, Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network, Z Für Med Phys
Abadi, 2016
Chollet, F. Kerashttps://github.com/fchollet/keras (2015).
Jones, 2001
Oliphant, 2015
Walt, 2014, scikit-image: image processing in Python, Peer J, 2, e453, 10.7717/peerj.453
Brett, 2018, nipy/nibabel: 2.3.0, Zenodo
Hunter, 2007, Matplotlib: a 2D graphics environment, Comput Sci Eng, 9, 90, 10.1109/MCSE.2007.55
Wang, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 600, 10.1109/TIP.2003.819861
Ravishankar, 2011, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans Med Imaging, 30, 1028, 10.1109/TMI.2010.2090538
Langkammer, 2017, Quantitative susceptibility mapping: report from the 2016 reconstruction challenge, Magn Reson Med
Robinson, 2017, Combining phase images from array coils using a short echo time reference scan (COMPOSER), Magn Reson Med, 77, 318, 10.1002/mrm.26093
Grodzki, 2012, Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA), Magn Reson Med, 67, 510, 10.1002/mrm.23017
Smith, 2002, Fast robust automated brain extraction, Hum Brain Mapp, 17, 143, 10.1002/hbm.10062
Li, 2014, Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping, NMR Biomed, 27, 219, 10.1002/nbm.3056
Liu, 2016, Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping, Magn Reson Med
Sun, 2018, Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method, NeuroImage, 179, 166, 10.1016/j.neuroimage.2018.06.036
Sharma, 2015, Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload, Magn Reson Med, 74, 673, 10.1002/mrm.25448