SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network

Zeitschrift für Medizinische Physik - Tập 29 - Trang 139-149 - 2019
Steffen Bollmann1, Matilde Holm Kristensen2, Morten Skaarup Larsen2, Mathias Vassard Olsen2, Mads Jozwiak Pedersen2, Lasse Riis Østergaard2, Kieran O’Brien1,3, Christian Langkammer4, Amir Fazlollahi5, Markus Barth1
1Centre for Advanced Imaging, The University of Queensland, Building 57 of University Dr, St Lucia, QLD 4072, Brisbane, Australia
2Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9000 Aalborg, Denmark
3Siemens Healthcare Pty Ltd, Brisbane, Australia
4Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
5CSIRO Health and Biosecurity Flagship, The Australian eHealth Research Centre, Australia

Tài liệu tham khảo

Deistung, 2017, Overview of quantitative susceptibility mapping: overview of Quantitative Susceptibility Mapping, NMR Biomed, 30, e3569, 10.1002/nbm.3569 Schweser, 2015, Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM), Z Für Med Phys Wharton, 2015, Effects of white matter microstructure on phase and susceptibility maps, Magn Reson Med, 73, 1258, 10.1002/mrm.25189 Ropele, 2016, Iron quantification with susceptibility: iron quantification with susceptibility, NMR Biomed Buch, 2015, Susceptibility mapping of air, bone, and calcium in the head, Magn Reson Med, 73, 2185, 10.1002/mrm.25350 Acosta-Cabronero, 2016, In Vivo MRI mapping of brain iron deposition across the adult lifespan, J Neurosci, 36, 364, 10.1523/JNEUROSCI.1907-15.2016 van Bergen, 2015, Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease, Am J Neuroradiol Barkhof, 2018, Mapping deep gray matter iron in multiple sclerosis by using quantitative magnetic susceptibility, Radiology, 181274 Acosta-Cabronero, 2013, In Vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's disease, PLoS ONE, 8, e81093, 10.1371/journal.pone.0081093 Langkammer, 2016, Quantitative Susceptibility Mapping in Parkinson's disease, PLOS ONE, 11, e0162460, 10.1371/journal.pone.0162460 Liu, 2012, Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping, Radiology, 262, 269, 10.1148/radiol.11110251 Schweser, 2010, Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping, Med Phys, 37, 5165, 10.1118/1.3481505 Reichenbach, 1997, Theory and application of static field inhomogeneity effects in gradient-echo imaging, J Magn Reson Imaging, 7, 266, 10.1002/jmri.1880070203 Langkammer, 2015, Fast quantitative susceptibility mapping using 3D EPI and total generalized variation, NeuroImage, 111, 622, 10.1016/j.neuroimage.2015.02.041 Sun, 2015, Quantitative susceptibility mapping using single-shot echo-planar imaging, Magn Reson Med, 73, 1932, 10.1002/mrm.25316 Schweser, 2011, Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?, NeuroImage, 54, 2789, 10.1016/j.neuroimage.2010.10.070 Schweser, 2016, An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest, NMR Biomed Li, 2001, High-precision mapping of the magnetic field utilizing the harmonic function mean value property, J Magn Reson San Diego Calif 1997, 148, 442 Li, 2011, Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition, NeuroImage, 55, 1645, 10.1016/j.neuroimage.2010.11.088 Özbay, 2016, A comprehensive numerical analysis of background phase correction with V-SHARP, NMR Biomed Zhou, 2014, Background field removal by solving the Laplacian boundary value problem: background field removal by solving laplacian boundary value problem, NMR Biomed, 27, 312, 10.1002/nbm.3064 Sun, 2014, Background field removal using spherical mean value filtering and Tikhonov regularization, Magn Reson Med, 71, 1151, 10.1002/mrm.24765 de Rochefort, 2010, Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging, Magn Reson Med, 63, 194, 10.1002/mrm.22187 Liu, 2011, A novel background field removal method for MRI using projection onto dipole fields (PDF), NMR Biomed, 24, 1129, 10.1002/nbm.1670 Wu, 2012, Whole brain susceptibility mapping using compressed sensing, Magn Reson Med, 67, 137, 10.1002/mrm.23000 Topfer, 2015, SHARP edges: recovering cortical phase contrast through harmonic extension, Magn Reson Med, 73, 851, 10.1002/mrm.25148 Rasmussen, 2018, DeepQSM – using deep learning to solve the dipole inversion for MRI susceptibility mapping, BioRxiv, 278036 Yoon, 2018, Quantitative susceptibility mapping using deep neural network: QSMnet, NeuroImage, 179, 199, 10.1016/j.neuroimage.2018.06.030 Liu, 2012, Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map, NeuroImage, 59, 2560, 10.1016/j.neuroimage.2011.08.082 Ronneberger, 2015, U-Net: convolutional networks for biomedical image segmentation, 234 Kingma, 2014 Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929 Jacobsen, 2018, Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network, Z Für Med Phys Abadi, 2016 Chollet, F. Kerashttps://github.com/fchollet/keras (2015). Jones, 2001 Oliphant, 2015 Walt, 2014, scikit-image: image processing in Python, Peer J, 2, e453, 10.7717/peerj.453 Brett, 2018, nipy/nibabel: 2.3.0, Zenodo Hunter, 2007, Matplotlib: a 2D graphics environment, Comput Sci Eng, 9, 90, 10.1109/MCSE.2007.55 Wang, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 600, 10.1109/TIP.2003.819861 Ravishankar, 2011, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans Med Imaging, 30, 1028, 10.1109/TMI.2010.2090538 Langkammer, 2017, Quantitative susceptibility mapping: report from the 2016 reconstruction challenge, Magn Reson Med Robinson, 2017, Combining phase images from array coils using a short echo time reference scan (COMPOSER), Magn Reson Med, 77, 318, 10.1002/mrm.26093 Grodzki, 2012, Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA), Magn Reson Med, 67, 510, 10.1002/mrm.23017 Smith, 2002, Fast robust automated brain extraction, Hum Brain Mapp, 17, 143, 10.1002/hbm.10062 Li, 2014, Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping, NMR Biomed, 27, 219, 10.1002/nbm.3056 Liu, 2016, Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping, Magn Reson Med Sun, 2018, Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method, NeuroImage, 179, 166, 10.1016/j.neuroimage.2018.06.036 Sharma, 2015, Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload, Magn Reson Med, 74, 673, 10.1002/mrm.25448