SH waves in a layer with temperature dependent properties

Acta Geophysica - Tập 62 Số 6 - Trang 1203-1213 - 2014
Stanisław J. Matysiak1, Radosław Mieszkowski1, Dariusz M. Perkowski2
1Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Warsaw, Poland
2Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acharya, D.P., and C. Maji (2007), Effect of surface stress on magneto-elastic surface waves in finitely conducting media, Acta Geophys. 55,4, 554–576, DOI: 10.2478/s11600-007-0026-2.

Achenbach, J.D., and O. Balogun (2010), Anti-plane surface waves on a half-space with depth-dependent properties, Wave Motion 47,1, 59–65, DOI: 10.1016/j.wavemoti.2009.08.002.

Aki, K., and P.G. Richards (1980), Quantitative Seismology, W.H. Freeman and Co., San Francisco, 932 pp.

Aouadi, M., and A.S. El-Karamany (2003), Plane waves in generalized thermoviscoelastic material with relaxation time and temperature-dependent properties, J. Therm. Stresses 26,3, 197–222, DOI: 10.1080/713855894.

Czaplewski, D.A., J.P. Sullivan, T.A. Friedmann, and J.R. Wendt (2005), Temperature dependence of the mechanical properties of tetrahedrally coordinated amorphous carbon thin films, Appl. Phys. Lett. 87,16, 161915, DOI: 10.1063/1.2108132.

Emery, A.F., and T.D. Fadale (1997), Handling temperature dependent properties and boundary conditions in stochastic finite element analysis, Numer. Heat Transfer, Part A 31,1, 37–51, DOI: 10.1080/10407789708914024.

Ezzat, M., M. Zakaria, and A. Abdel-Bary (2004), Generalized thermoelasticity with temperature dependent modulus of elasticity under three theories, J. Appl. Math. Comp. 14,1–2, 193–212, DOI: 10.1007/BF02936108.

Hata, T. (1979), Thermoelastic problem for a Griffith crack in a plate with temperature-dependent properties under a linear temperature distribution, J. Therm. Stresses 2,3–4, 353–366, DOI: 10.1080/01495737908962412.

Hata, T. (1981), Thermoelastic problem for a Griffith crack in a plate whose shear modulus is an exponential function of the temperature, ZAMM J. Appl. Math. Mech. 61,2, 81–87, DOI: 10.1002/zamm.19810610204.

Kamke, E. (1976), Handbook of Ordinary Differential Equations, Nauka, Moscow, (in Russian).

Komatitsch, D., and J. Tromp (1999), Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. Int. J. 139,3, 806–822, DOI: 10.1046/j.1365-246x.1999.00967.x.

Lee, H.-J., and D.A. Saravanos (1998), The effect of temperature dependent material properties on the response of piezoelectric composite materials, J. Intel. Mat. Syst. Struct. 9,7, 503–508, DOI: 10.1177/1045389X9800900702.

Lokajíček, T., V. Rudajev, R.D. Dwivedi, R.K. Goel, and A. Swarup (2012), Influence of thermal heating on elastic wave velocities in granulite, Int. J. Rock Mech. Min. Sci. 54,1–8, DOI: 10.1016/j.ijrmms.2012.05.012.

Matysiak, S.J. (1988), Wave fronts in elastic media with temperature dependent properties, Appl. Sci. Res. 45,2, 97–106, DOI: 10.1007/BF00386206.

Matysiak, S.J., and D.M. Perkowski (2013), Green’s function for an elastic layer with temperature-dependent properties, Mat. Sci. 48,5, 607–613, DOI: 10.1007/s11003-013-9544-z.

Mondal, A.K., and D.P. Acharya (2006), Surface waves in a micropolar elastic solid containing voids, Acta Geophys. 54,4, 430–452, DOI: 10.2478/s11600-006-0032-9.

Mukhopadhyay, S., and R. Kumar (2009), Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method, Comput. Meth. Sci. Tech. 15,2, 169–176.

Nowinski, J. (1959), Thermoelastic problem for an isotropic sphere with temperature dependent properties, Z. Angew. Math. Phys. 10,6, 565–575, DOI: 10.1007/BF01601612.

Nowinski, J. (1960), A Betti-Rayleigh theorem for elastic bodies exhibiting temperature dependent properties, Appl. Sci. Res. 9,1, 429–436, DOI: 10.1007/BF00382220.

Nowinski, J. (1962), Transient thermoelastic problem for an infinite medium with a spherical cavity exhibiting temperature-dependent properties, J. Appl. Mech. 29,2, 399–407, DOI: 10.1115/1.3640561.

Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff Int. Publ., Alphen aan den Rijn, 836 pp.

Petrof, R.C., and S. Gratch (1964), Wave propagation in a viscoelastic material with temperature-dependent properties and thermomechanical coupling, J. Appl. Mech. 31,3, 423–430, DOI: 10.1115/1.3629658.

Schreiber, E., O.L. Anderson, and N. Soga (1973), Elastic Constants and Their Measurement, Mc Graw-Hill, New York, 196 pp.

Speriatu, L.M. (2005) Temperature dependent mechanical properties of composite materials and uncertainties in experimental measurements, Ph.D. Thesis, University of Florida, 159 pp.

Sumi, N., and Y. Sugano (1997), Thermally induced stress waves in functionally graded materials with temperature-dependent material properties, J. Therm. Stresses 20,3–4, 281–294, DOI: 10.1080/01495739708956103.

Sun, D., and S.-N. Luo (2011), Wave propagation of functionally graded material plates in thermal environments, Ultrasonics 51,8, 940–052, DOI: 10.1016/j.ultras.2011.05.009.

Tao, L.N. (1989), The heat conduction problem with temperature-dependent material properties, Int. J. Heat Mass Tran. 32,3, 487–491, DOI: 10.1016/0017-9310(89)90136-1.

Tillmann, A.R., V.L. Borges, G. Guimarães, A.L.F.L. Silva, and S.M.M.L. Silva (2008), Identification of temperature-dependent thermal properties of solid materials, J. Braz. Soc. Mech. Sci. Eng. 30,4, 269–278, DOI: 10.1590/S1678-58782008000400001.

Virieux, J. (1986), P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics 51,4, 889–901, DOI: 10.1190/1.1442147.

Xia, J., R.D. Miller, and C.B. Park (1999), Estimation of near-surface share-wave velocity by inversion of Rayleigh waves, Geophysics 64,3, 691–700, DOI: 10.1190/1.1444578.