SH-type wave motion in a geophysical model with monoclinic and heterogeneous media due to a point source at the interface
Tóm tắt
Từ khóa
Tài liệu tham khảo
Love, A.E.: Some Problems of Geodynamics, Cambridge University Press (1911)
Ewing, W.M., Jardetzky, W.S., Press, F., Beiser, A.: Elastic waves in layered media. Phys. Today 10(12), 27 (1957)
Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier (2012)
Manna, S., Kundu, S., Gupta, S.: SH-type surface wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space. J. Vib. Control 21(13), 2553–68 (2015)
Shams, M.: Effect of initial stress on SH-type surface wave propagation at the boundary between a layer and a half-space. Wave Motion 65, 92–104 (2016)
Kundu, S., Kumari, A., Pandit, D.K., Gupta, S.: SH-type surface wave propagation in heterogeneous micropolar media. Mech. Res. Commun. 83, 6–11 (2017). (Jul 1)
Kundu, S., Gupta, S., Chattopadhyay, A., Majhi, D.K.: SH-type surface wave propagation in porous rigid layer lying over an initially stressed half-space. Int. J. Appl. Phys. Math. 3(2), 140 (2013). (Mar 1)
Baroudi, A.E.: Influence of poroelasticity of the surface layer on the surface SH-type surface wave propagation. J. Appl. Mech. 85(5), 1 (2018)
Chen, K., Wu, Z., Jin, Y., Hu, J., Du, J., Zhang, M.: SH-type surface wave propagation in piezoelectric structures bonded with conductive polymer films. Ultrasonics 118, 106559 (2022). (Jan 1)
Singh, A.K., Rajput, P., Chaki, M.S.: Analytical study of SH-type surface wave propagation in functionally graded piezo-poroelastic media with electroded boundary and abruptly thickened imperfect interface. Waves Random Complex Media 32(1), 463–87 (2022). (Jan 2)
Gupta, S., Pramanik, A., Ahmed, M., Verma, A.K.: SH-type surface wave propagation in prestressed piezoelectric layered structure. Int. J. Appl. Mech. 8(04), 1650045 (2016). (Jun 15)
Mandi, A., Kundu, S., Pal, P.C., Pati, P.: An analytic study on the dispersion of SH-type surface wave propagation in double layers lying over inhomogeneous half-space. J. Solid Mech. 11(3), 570–80 (2019). (Sep 30)
Sheppard, C.J., Kou, S.S., Lin, J.: The Green-function transform and wave propagation. Front. Phys. 1, 1 (2014)
Hutchings, L., Viegas, G.: Application of empirical Green’s functions in Earthquake source, wave propagation and strong ground motion studies. Earthq. Res. Anal.-New Front. Seismol. 1, 87–140 (2012)
Singh, A.K., Kumari, R., Dharmender: Green’s function analysis of mass loading sensitivity on the shear wave propagation induced by a point source in piezo-electro-magnetic structure. Mech. Based Des. Struct. Mach. 1–22 (2020)
Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–31 (2013). (Jun)
Kundu, S., Gupta, S., Vaishnav, P.K., Manna, S.: Propagation of SH-type surface wave in a heterogeneous medium over an inhomogeneous half-space under the effect of point source. J. Vib. Control 22(5), 1380–91 (2016). (Mar)
Gupta, S., Smita, S., Pramanik, A. Pramanik.: A comparative analysis (real-time data and theoretical results) for propagation of SH waves in a viscoelastic model influenced by a point source. Math. Mech. Solids 24(8), 2458–77 (2019). (Aug)
Singh, A.K., Das, A., Ray, A., Chattopadhyay, A.: On point source influencing Love-type wave propagation in a functionally graded piezoelectric composite structure: A Green’s function approach. J. Intell. Mater. Syst. Struct. 29(9), 1928–40 (2018). (May)
Singh, A.K., Das, A., Mistri, K.C., Chattopadhyay, A.: Green’s function approach to study the propagation of SH-wave in piezoelectric layer influenced by a point source. Math. Methods Appl. Sci. 40(13), 4771–84 (2017). (Sep 15)
Kumar, P., Mahanty, M., Chattopadhyay, A., Singh, A.K.: Green’s function technique to study the influence of heterogeneity on horizontally polarised shear-wave propagation due to a line source in composite layered structure. J. Vib. Control 26(9–10), 701–12 (2020). (May)
Ray, A., Singh, A.K., Kumari, R.: Green’s function technique to model Love-type wave propagation due to an impulsive point source in a piezomagnetic layered structure. Mech. Adv. Mater. Struct. 28(7), 709–20 (2021). (Mar 2)
Singh, S.J., Sachdeva, N., Khurana, S.: A note on the dispersion of SH-type surface wave in layered monoclinic elastic media. Proc.-Math. Sci. 109(4), 417–23 (1999). (Nov)
Kuznetsov, S.V.: SH-type surface wave in stratified monoclinic media. Q. Appl. Math. 62(4), 749–66 (2004)
Chattopadhyay, A., Gupta, S., Sharma, V.K., Kumari, P.: Propagation of SH waves in an irregular monoclinic crustal layer. Arch. Appl. Mech. 78(12), 989–99 (2008). (Dec)
Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Int. J. Eng. Sci. Technol. 1(1), 228–44 (2009)
Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A.: Propagation of SH waves in an irregular non homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium. Appl. Math. Sci. 4(44), 2157–70 (2010)
Kundu, S., Manna, S., Gupta, S.: SH-type surface wave dispersion in pre-stressed homogeneous medium over a porous half-space with irregular boundary surfaces. Int. J. Solids Struct. 51(21–22), 3689–97 (2014). (Oct 15)
Saha, S.: Dispersion of SH-type surface wave in a composite layer resting on monoclinic half-space. J. Appl. Math. (2011)
Şahin, O.: Mixed boundary value problems for Rayleigh wave in a half-plane with cubic anisotropy. ZAMM-J Appl Math Mech/Zeitschrift fur Angewandte Mathematik und Mechanik 101(8), e202000171 (2021)
Khan, A.A., Dilshad, A., Rahimi-Gorji, M., Alam, M.M.: Effect of initial stress on an SH wave in a monoclinic layer over a heterogeneous monoclinic half-space. Mathematics 9(24), 3243 (2021). (Jan)