SH-type wave motion in a geophysical model with monoclinic and heterogeneous media due to a point source at the interface

Archive of Applied Mechanics - Tập 93 Số 6 - Trang 2613-2629 - 2023
Nirakara Pradhan1, Santanu Manna2, Sapan Kumar Samal1
1Department of Mathematics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
2Department of Mathematics, Indian Institute of Technology Indore, Indore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Love, A.E.: Some Problems of Geodynamics, Cambridge University Press (1911)

Ewing, W.M., Jardetzky, W.S., Press, F., Beiser, A.: Elastic waves in layered media. Phys. Today 10(12), 27 (1957)

Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier (2012)

Manna, S., Kundu, S., Gupta, S.: SH-type surface wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space. J. Vib. Control 21(13), 2553–68 (2015)

Shams, M.: Effect of initial stress on SH-type surface wave propagation at the boundary between a layer and a half-space. Wave Motion 65, 92–104 (2016)

Kundu, S., Kumari, A., Pandit, D.K., Gupta, S.: SH-type surface wave propagation in heterogeneous micropolar media. Mech. Res. Commun. 83, 6–11 (2017). (Jul 1)

Kundu, S., Gupta, S., Chattopadhyay, A., Majhi, D.K.: SH-type surface wave propagation in porous rigid layer lying over an initially stressed half-space. Int. J. Appl. Phys. Math. 3(2), 140 (2013). (Mar 1)

Baroudi, A.E.: Influence of poroelasticity of the surface layer on the surface SH-type surface wave propagation. J. Appl. Mech. 85(5), 1 (2018)

Chen, K., Wu, Z., Jin, Y., Hu, J., Du, J., Zhang, M.: SH-type surface wave propagation in piezoelectric structures bonded with conductive polymer films. Ultrasonics 118, 106559 (2022). (Jan 1)

Singh, A.K., Rajput, P., Chaki, M.S.: Analytical study of SH-type surface wave propagation in functionally graded piezo-poroelastic media with electroded boundary and abruptly thickened imperfect interface. Waves Random Complex Media 32(1), 463–87 (2022). (Jan 2)

Gupta, S., Pramanik, A., Ahmed, M., Verma, A.K.: SH-type surface wave propagation in prestressed piezoelectric layered structure. Int. J. Appl. Mech. 8(04), 1650045 (2016). (Jun 15)

Mandi, A., Kundu, S., Pal, P.C., Pati, P.: An analytic study on the dispersion of SH-type surface wave propagation in double layers lying over inhomogeneous half-space. J. Solid Mech. 11(3), 570–80 (2019). (Sep 30)

Sheppard, C.J., Kou, S.S., Lin, J.: The Green-function transform and wave propagation. Front. Phys. 1, 1 (2014)

Hutchings, L., Viegas, G.: Application of empirical Green’s functions in Earthquake source, wave propagation and strong ground motion studies. Earthq. Res. Anal.-New Front. Seismol. 1, 87–140 (2012)

Singh, A.K., Kumari, R., Dharmender: Green’s function analysis of mass loading sensitivity on the shear wave propagation induced by a point source in piezo-electro-magnetic structure. Mech. Based Des. Struct. Mach. 1–22 (2020)

Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–31 (2013). (Jun)

Kundu, S., Gupta, S., Vaishnav, P.K., Manna, S.: Propagation of SH-type surface wave in a heterogeneous medium over an inhomogeneous half-space under the effect of point source. J. Vib. Control 22(5), 1380–91 (2016). (Mar)

Gupta, S., Smita, S., Pramanik, A. Pramanik.: A comparative analysis (real-time data and theoretical results) for propagation of SH waves in a viscoelastic model influenced by a point source. Math. Mech. Solids 24(8), 2458–77 (2019). (Aug)

Singh, A.K., Das, A., Ray, A., Chattopadhyay, A.: On point source influencing Love-type wave propagation in a functionally graded piezoelectric composite structure: A Green’s function approach. J. Intell. Mater. Syst. Struct. 29(9), 1928–40 (2018). (May)

Singh, A.K., Das, A., Mistri, K.C., Chattopadhyay, A.: Green’s function approach to study the propagation of SH-wave in piezoelectric layer influenced by a point source. Math. Methods Appl. Sci. 40(13), 4771–84 (2017). (Sep 15)

Kumar, P., Mahanty, M., Chattopadhyay, A., Singh, A.K.: Green’s function technique to study the influence of heterogeneity on horizontally polarised shear-wave propagation due to a line source in composite layered structure. J. Vib. Control 26(9–10), 701–12 (2020). (May)

Ray, A., Singh, A.K., Kumari, R.: Green’s function technique to model Love-type wave propagation due to an impulsive point source in a piezomagnetic layered structure. Mech. Adv. Mater. Struct. 28(7), 709–20 (2021). (Mar 2)

Singh, S.J., Sachdeva, N., Khurana, S.: A note on the dispersion of SH-type surface wave in layered monoclinic elastic media. Proc.-Math. Sci. 109(4), 417–23 (1999). (Nov)

Kuznetsov, S.V.: SH-type surface wave in stratified monoclinic media. Q. Appl. Math. 62(4), 749–66 (2004)

Chattopadhyay, A., Gupta, S., Sharma, V.K., Kumari, P.: Propagation of SH waves in an irregular monoclinic crustal layer. Arch. Appl. Mech. 78(12), 989–99 (2008). (Dec)

Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Int. J. Eng. Sci. Technol. 1(1), 228–44 (2009)

Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A.: Propagation of SH waves in an irregular non homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium. Appl. Math. Sci. 4(44), 2157–70 (2010)

Kundu, S., Manna, S., Gupta, S.: SH-type surface wave dispersion in pre-stressed homogeneous medium over a porous half-space with irregular boundary surfaces. Int. J. Solids Struct. 51(21–22), 3689–97 (2014). (Oct 15)

Saha, S.: Dispersion of SH-type surface wave in a composite layer resting on monoclinic half-space. J. Appl. Math. (2011)

Şahin, O.: Mixed boundary value problems for Rayleigh wave in a half-plane with cubic anisotropy. ZAMM-J Appl Math Mech/Zeitschrift fur Angewandte Mathematik und Mechanik 101(8), e202000171 (2021)

Khan, A.A., Dilshad, A., Rahimi-Gorji, M., Alam, M.M.: Effect of initial stress on an SH wave in a monoclinic layer over a heterogeneous monoclinic half-space. Mathematics 9(24), 3243 (2021). (Jan)

Pradhan, N., Samal, S.K.: Surface waves propagation in a homogeneous liquid layer overlying a monoclinic half-space. Appl. Math. Comput. 414, 126655 (2022). (Feb 1)